Suchergebnisse - "Reliability engineering & system safety"

  1. 1

    Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries von Wang, Shunli, Fan, Yongcun, Jin, Siyu, Takyi-Aninakwa, Paul, Fernandez, Carlos

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Barking Elsevier Ltd 01.02.2023
    Veröffentlicht in Reliability engineering & system safety (01.02.2023)
    “… •An improved ANA-LSTM model is built for RUL prediction of lithium-ion batteries.•Multiple feature collaboration is conducted for internal parameter …”
    Volltext
    Journal Article
  2. 2

    Support vector machine in structural reliability analysis: A review von Roy, Atin, Chakraborty, Subrata

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Elsevier Ltd 01.05.2023
    Veröffentlicht in Reliability engineering & system safety (01.05.2023)
    “… •SVM is excellent to handle high dimensional problems utilizing lesser training data.•No review article specifically dedicated to the applications of SVM in …”
    Volltext
    Journal Article
  3. 3

    Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice von Zio, Enrico

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Barking Elsevier Ltd 01.02.2022
    Veröffentlicht in Reliability engineering & system safety (01.02.2022)
    “… •Main PHM challenges in industry 4.0: physics, data and solution requirements.•Data challenges: missing of anomalies, labels and the continuously monitored …”
    Volltext
    Journal Article
  4. 4

    Domain generalization for cross-domain fault diagnosis: An application-oriented perspective and a benchmark study von Zhao, Chao, Zio, Enrico, Shen, Weiming

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Elsevier Ltd 01.05.2024
    Veröffentlicht in Reliability engineering & system safety (01.05.2024)
    “… •The first taxonomy for domain generalization-based fault diagnosis is proposed.•A basic and reproducible code framework is provided.•A broad discussion of …”
    Volltext
    Journal Article
  5. 5

    Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry von Theissler, Andreas, Pérez-Velázquez, Judith, Kettelgerdes, Marcel, Elger, Gordon

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Barking Elsevier Ltd 01.11.2021
    Veröffentlicht in Reliability engineering & system safety (01.11.2021)
    “… Recent developments in maintenance modelling fuelled by data-based approaches such as machine learning (ML), have enabled a broad range of applications. In the …”
    Volltext
    Journal Article
  6. 6

    Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing von Zhang, Yongchao, Ji, J.C., Ren, Zhaohui, Ni, Qing, Gu, Fengshou, Feng, Ke, Yu, Kun, Ge, Jian, Lei, Zihao, Liu, Zheng

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Elsevier Ltd 01.06.2023
    Veröffentlicht in Reliability engineering & system safety (01.06.2023)
    “… Fault diagnosis of rolling bearings has attracted extensive attention in industrial fields, which plays a vital role in guaranteeing the reliability, safety, …”
    Volltext
    Journal Article
  7. 7

    Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges von Xu, Yanwen, Kohtz, Sara, Boakye, Jessica, Gardoni, Paolo, Wang, Pingfeng

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Barking Elsevier BV 01.02.2023
    Veröffentlicht in Reliability engineering & system safety (01.02.2023)
    “… The computerized simulations of physical and socio-economic systems have proliferated in the past decade, at the same time, the capability to develop …”
    Volltext
    Journal Article
  8. 8

    Machine learning for reliability engineering and safety applications: Review of current status and future opportunities von Xu, Zhaoyi, Saleh, Joseph Homer

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Barking Elsevier Ltd 01.07.2021
    Veröffentlicht in Reliability engineering & system safety (01.07.2021)
    “… •We provides a synthesis of the literature on ML for reliability & safety applications.•ML can provide novel, more accurate insights than traditional …”
    Volltext
    Journal Article
  9. 9

    Machine learning-based methods in structural reliability analysis: A review von Saraygord Afshari, Sajad, Enayatollahi, Fatemeh, Xu, Xiangyang, Liang, Xihui

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Barking Elsevier Ltd 01.03.2022
    Veröffentlicht in Reliability engineering & system safety (01.03.2022)
    “… •A review of the machine learning-based structural reliability analysis methods is presented.•Artificial neural networks-based structural reliability analysis …”
    Volltext
    Journal Article
  10. 10

    Fusing physics-based and deep learning models for prognostics von Arias Chao, Manuel, Kulkarni, Chetan, Goebel, Kai, Fink, Olga

    ISSN: 0951-8320, 1879-0836, 1879-0836
    Veröffentlicht: Barking Elsevier Ltd 01.01.2022
    Veröffentlicht in Reliability engineering & system safety (01.01.2022)
    “… Physics-based and data-driven models for remaining useful lifetime (RUL) prediction typically suffer from two major challenges that limit their applicability …”
    Volltext
    Journal Article
  11. 11

    Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning von Xia, Min, Shao, Haidong, Williams, Darren, Lu, Siliang, Shu, Lei, de Silva, Clarence W.

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Barking Elsevier Ltd 01.11.2021
    Veröffentlicht in Reliability engineering & system safety (01.11.2021)
    “… •A methodology for fault diagnosis with limited available data is achieved.•A digital twin of the machine is used to provide fault condition data for …”
    Volltext
    Journal Article
  12. 12

    Remaining useful life estimation in prognostics using deep convolution neural networks von Li, Xiang, Ding, Qian, Sun, Jian-Qiao

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Barking Elsevier Ltd 01.04.2018
    Veröffentlicht in Reliability engineering & system safety (01.04.2018)
    “… •Propose a novel deep convolutional neural network-based method for remaining useful life predictions.•No prior expertise on prognostics and signal processing …”
    Volltext
    Journal Article
  13. 13

    Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism von Zhang, Jiusi, Jiang, Yuchen, Wu, Shimeng, Li, Xiang, Luo, Hao, Yin, Shen

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Barking Elsevier Ltd 01.05.2022
    Veröffentlicht in Reliability engineering & system safety (01.05.2022)
    “… Prediction of remaining useful life (RUL) is of vital significance in the prognostics health management (PHM) tasks. To deal with the reverse time series and …”
    Volltext
    Journal Article
  14. 14

    Meta-learning with elastic prototypical network for fault transfer diagnosis of bearings under unstable speeds von Luo, Jingjie, Shao, Haidong, Lin, Jian, Liu, Bin

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Elsevier Ltd 01.05.2024
    Veröffentlicht in Reliability engineering & system safety (01.05.2024)
    “… •A reinforced feature encoder incorporating a squeeze and excitation attention mechanism is devised.•An elastic measurer is introduced to offer more flexible …”
    Volltext
    Journal Article
  15. 15

    Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis von Meng, Huixing, Geng, Mengyao, Han, Te

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Elsevier Ltd 01.08.2023
    Veröffentlicht in Reliability engineering & system safety (01.08.2023)
    “… Prognostics and health management (PHM) are developed to accurately estimate the state of health (SOH) of lithium-ion batteries, which are crucial parts for …”
    Volltext
    Journal Article
  16. 16

    A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings von Cao, Yudong, Ding, Yifei, Jia, Minping, Tian, Rushuai

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Barking Elsevier Ltd 01.11.2021
    Veröffentlicht in Reliability engineering & system safety (01.11.2021)
    “… •Causal dilated convolution block is built to learn the temporal dependencies.•A residual attention mechanism is proposed to obtain the contribution …”
    Volltext
    Journal Article
  17. 17

    Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework von Zhou, Taotao, Han, Te, Droguett, Enrique Lopez

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Barking Elsevier Ltd 01.08.2022
    Veröffentlicht in Reliability engineering & system safety (01.08.2022)
    “… Fault diagnosis is efficient to improve the safety, reliability, and cost-effectiveness of industrial machinery. Deep learning has been extensively …”
    Volltext
    Journal Article
  18. 18

    Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions von Ding, Yifei, Jia, Minping, Zhuang, Jichao, Cao, Yudong, Zhao, Xiaoli, Lee, Chi-Guhn

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Barking Elsevier Ltd 01.02.2023
    Veröffentlicht in Reliability engineering & system safety (01.02.2023)
    “… The tremendous success of deep learning and transfer learning broadened the scope of fault diagnosis, especially the latter further improved the diagnosis …”
    Volltext
    Journal Article
  19. 19

    Prognostics and health management: A review from the perspectives of design, development and decision von Hu, Yang, Miao, Xuewen, Si, Yong, Pan, Ershun, Zio, Enrico

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Barking Elsevier Ltd 01.01.2022
    Veröffentlicht in Reliability engineering & system safety (01.01.2022)
    “… •The life cycle of prognostics and health management (PHM) is structuredinto DEsign, DEvelopment and DEcision phases (DE3).•Essences, key activities and …”
    Volltext
    Journal Article
  20. 20

    Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE von Zhang, Yong, Xin, Yuqi, Liu, Zhi-wei, Chi, Ming, Ma, Guijun

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Barking Elsevier Ltd 01.04.2022
    Veröffentlicht in Reliability engineering & system safety (01.04.2022)
    “… Prognostics and health management (PHM) is a critical work to ensure the reliable operation of industrial equipment, in which health status (HS) assessment and …”
    Volltext
    Journal Article