Suchergebnisse - "Reliability engineering & system safety"
-
1
Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries
ISSN: 0951-8320, 1879-0836Veröffentlicht: Barking Elsevier Ltd 01.02.2023Veröffentlicht in Reliability engineering & system safety (01.02.2023)“… •An improved ANA-LSTM model is built for RUL prediction of lithium-ion batteries.•Multiple feature collaboration is conducted for internal parameter …”
Volltext
Journal Article -
2
Support vector machine in structural reliability analysis: A review
ISSN: 0951-8320, 1879-0836Veröffentlicht: Elsevier Ltd 01.05.2023Veröffentlicht in Reliability engineering & system safety (01.05.2023)“… •SVM is excellent to handle high dimensional problems utilizing lesser training data.•No review article specifically dedicated to the applications of SVM in …”
Volltext
Journal Article -
3
Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice
ISSN: 0951-8320, 1879-0836Veröffentlicht: Barking Elsevier Ltd 01.02.2022Veröffentlicht in Reliability engineering & system safety (01.02.2022)“… •Main PHM challenges in industry 4.0: physics, data and solution requirements.•Data challenges: missing of anomalies, labels and the continuously monitored …”
Volltext
Journal Article -
4
Domain generalization for cross-domain fault diagnosis: An application-oriented perspective and a benchmark study
ISSN: 0951-8320, 1879-0836Veröffentlicht: Elsevier Ltd 01.05.2024Veröffentlicht in Reliability engineering & system safety (01.05.2024)“… •The first taxonomy for domain generalization-based fault diagnosis is proposed.•A basic and reproducible code framework is provided.•A broad discussion of …”
Volltext
Journal Article -
5
Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry
ISSN: 0951-8320, 1879-0836Veröffentlicht: Barking Elsevier Ltd 01.11.2021Veröffentlicht in Reliability engineering & system safety (01.11.2021)“… Recent developments in maintenance modelling fuelled by data-based approaches such as machine learning (ML), have enabled a broad range of applications. In the …”
Volltext
Journal Article -
6
Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing
ISSN: 0951-8320, 1879-0836Veröffentlicht: Elsevier Ltd 01.06.2023Veröffentlicht in Reliability engineering & system safety (01.06.2023)“… Fault diagnosis of rolling bearings has attracted extensive attention in industrial fields, which plays a vital role in guaranteeing the reliability, safety, …”
Volltext
Journal Article -
7
Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges
ISSN: 0951-8320, 1879-0836Veröffentlicht: Barking Elsevier BV 01.02.2023Veröffentlicht in Reliability engineering & system safety (01.02.2023)“… The computerized simulations of physical and socio-economic systems have proliferated in the past decade, at the same time, the capability to develop …”
Volltext
Journal Article -
8
Machine learning for reliability engineering and safety applications: Review of current status and future opportunities
ISSN: 0951-8320, 1879-0836Veröffentlicht: Barking Elsevier Ltd 01.07.2021Veröffentlicht in Reliability engineering & system safety (01.07.2021)“… •We provides a synthesis of the literature on ML for reliability & safety applications.•ML can provide novel, more accurate insights than traditional …”
Volltext
Journal Article -
9
Machine learning-based methods in structural reliability analysis: A review
ISSN: 0951-8320, 1879-0836Veröffentlicht: Barking Elsevier Ltd 01.03.2022Veröffentlicht in Reliability engineering & system safety (01.03.2022)“… •A review of the machine learning-based structural reliability analysis methods is presented.•Artificial neural networks-based structural reliability analysis …”
Volltext
Journal Article -
10
Fusing physics-based and deep learning models for prognostics
ISSN: 0951-8320, 1879-0836, 1879-0836Veröffentlicht: Barking Elsevier Ltd 01.01.2022Veröffentlicht in Reliability engineering & system safety (01.01.2022)“… Physics-based and data-driven models for remaining useful lifetime (RUL) prediction typically suffer from two major challenges that limit their applicability …”
Volltext
Journal Article -
11
Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning
ISSN: 0951-8320, 1879-0836Veröffentlicht: Barking Elsevier Ltd 01.11.2021Veröffentlicht in Reliability engineering & system safety (01.11.2021)“… •A methodology for fault diagnosis with limited available data is achieved.•A digital twin of the machine is used to provide fault condition data for …”
Volltext
Journal Article -
12
Remaining useful life estimation in prognostics using deep convolution neural networks
ISSN: 0951-8320, 1879-0836Veröffentlicht: Barking Elsevier Ltd 01.04.2018Veröffentlicht in Reliability engineering & system safety (01.04.2018)“… •Propose a novel deep convolutional neural network-based method for remaining useful life predictions.•No prior expertise on prognostics and signal processing …”
Volltext
Journal Article -
13
Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism
ISSN: 0951-8320, 1879-0836Veröffentlicht: Barking Elsevier Ltd 01.05.2022Veröffentlicht in Reliability engineering & system safety (01.05.2022)“… Prediction of remaining useful life (RUL) is of vital significance in the prognostics health management (PHM) tasks. To deal with the reverse time series and …”
Volltext
Journal Article -
14
Meta-learning with elastic prototypical network for fault transfer diagnosis of bearings under unstable speeds
ISSN: 0951-8320, 1879-0836Veröffentlicht: Elsevier Ltd 01.05.2024Veröffentlicht in Reliability engineering & system safety (01.05.2024)“… •A reinforced feature encoder incorporating a squeeze and excitation attention mechanism is devised.•An elastic measurer is introduced to offer more flexible …”
Volltext
Journal Article -
15
Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis
ISSN: 0951-8320, 1879-0836Veröffentlicht: Elsevier Ltd 01.08.2023Veröffentlicht in Reliability engineering & system safety (01.08.2023)“… Prognostics and health management (PHM) are developed to accurately estimate the state of health (SOH) of lithium-ion batteries, which are crucial parts for …”
Volltext
Journal Article -
16
A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings
ISSN: 0951-8320, 1879-0836Veröffentlicht: Barking Elsevier Ltd 01.11.2021Veröffentlicht in Reliability engineering & system safety (01.11.2021)“… •Causal dilated convolution block is built to learn the temporal dependencies.•A residual attention mechanism is proposed to obtain the contribution …”
Volltext
Journal Article -
17
Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework
ISSN: 0951-8320, 1879-0836Veröffentlicht: Barking Elsevier Ltd 01.08.2022Veröffentlicht in Reliability engineering & system safety (01.08.2022)“… Fault diagnosis is efficient to improve the safety, reliability, and cost-effectiveness of industrial machinery. Deep learning has been extensively …”
Volltext
Journal Article -
18
Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions
ISSN: 0951-8320, 1879-0836Veröffentlicht: Barking Elsevier Ltd 01.02.2023Veröffentlicht in Reliability engineering & system safety (01.02.2023)“… The tremendous success of deep learning and transfer learning broadened the scope of fault diagnosis, especially the latter further improved the diagnosis …”
Volltext
Journal Article -
19
Prognostics and health management: A review from the perspectives of design, development and decision
ISSN: 0951-8320, 1879-0836Veröffentlicht: Barking Elsevier Ltd 01.01.2022Veröffentlicht in Reliability engineering & system safety (01.01.2022)“… •The life cycle of prognostics and health management (PHM) is structuredinto DEsign, DEvelopment and DEcision phases (DE3).•Essences, key activities and …”
Volltext
Journal Article -
20
Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE
ISSN: 0951-8320, 1879-0836Veröffentlicht: Barking Elsevier Ltd 01.04.2022Veröffentlicht in Reliability engineering & system safety (01.04.2022)“… Prognostics and health management (PHM) is a critical work to ensure the reliable operation of industrial equipment, in which health status (HS) assessment and …”
Volltext
Journal Article