Suchergebnisse - "Relevance factor variational autoencoder"

  • Treffer 1 - 4 von 4
Treffer weiter einschränken
  1. 1

    Developing a fair and interpretable representation of the clock drawing test for mitigating low education and racial bias von Zhang, Jiaqing, Bandyopadhyay, Sabyasachi, Kimmet, Faith, Wittmayer, Jack, Khezeli, Kia, Libon, David J., Price, Catherine C., Rashidi, Parisa

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 29.07.2024
    Veröffentlicht in Scientific reports (29.07.2024)
    “… The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual’s cognitive ability. In this study, we developed a Fair and …”
    Volltext
    Journal Article
  2. 2

    Explainable semi-supervised deep learning shows that dementia is associated with small, avocado-shaped clocks with irregularly placed hands von Bandyopadhyay, Sabyasachi, Wittmayer, Jack, Libon, David J., Tighe, Patrick, Price, Catherine, Rashidi, Parisa

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 06.05.2023
    Veröffentlicht in Scientific reports (06.05.2023)
    “… In this study, we used the relevance factor variational autoencoder (RF-VAE), a deep generative neural network, to represent digitized clock drawings from multiple institutions using an optimal number of disentangled latent factors …”
    Volltext
    Journal Article
  3. 3

    A vision transformer approach for fully automated and scalable dementia screening using clock drawing test images von Bone, Michael B., Freedman, Morris, Black, Sandra E., Felsky, Daniel, Kumar, Sanjeev, Pugh, Bradley, Strother, Stephen C., Tang‐Wai, David F., Tartaglia, Maria Carmela, Buchsbaum, Bradley R.

    ISSN: 2352-8729, 2352-8729
    Veröffentlicht: United States Wiley 01.07.2025
    “… ‐scored features (74.3%) and existing deep learning models (MiniVGG = 73.3%, MobileNetV2 = 72.3%, relevance factor variational autoencoder …”
    Volltext
    Journal Article
  4. 4

    FaIRClocks: Fair and Interpretable Representation of the Clock Drawing Test for mitigating classifier bias against lower educational groups von Zhang, Jiaqing, Bandyopadhyay, Sabyasachi, Kimmet, Faith, Wittmayer, Jack, Khezeli, Kia, Libon, David J, Price, Catherine C, Rashidi, Parisa

    ISSN: 2693-5015, 2693-5015
    Veröffentlicht: United States 09.10.2023
    Veröffentlicht in Research square (09.10.2023)
    “… We represented clock drawings with a 10-dimensional latent embedding using Relevance Factor Variational Autoencoder (RF-VAE …”
    Weitere Angaben
    Journal Article