Suchergebnisse - "Quantum autoencoder"

  1. 1
  2. 2

    Experimental Realization of a Quantum Autoencoder: The Compression of Qutrits via Machine Learning von Pepper, Alex, Tischler, Nora, Pryde, Geoff J.

    ISSN: 0031-9007, 1079-7114, 1079-7114
    Veröffentlicht: United States American Physical Society 15.02.2019
    Veröffentlicht in Physical review letters (15.02.2019)
    “… Quantum autoencoders have been proposed as a way to reduce quantum memory requirements. Generally, an autoencoder is a device that uses machine learning to compress inputs, that is, to represent the input data in a lower-dimensional space …”
    Volltext
    Journal Article
  3. 3

    Hybrid classical-quantum autoencoder for anomaly detection von Sakhnenko, Alona, O’Meara, Corey, Ghosh, Kumar J. B., Mendl, Christian B., Cortiana, Giorgio, Bernabé-Moreno, Juan

    ISSN: 2524-4906, 2524-4914
    Veröffentlicht: Cham Springer International Publishing 01.12.2022
    Veröffentlicht in Quantum machine intelligence (01.12.2022)
    “… We propose a hybrid classical-quantum autoencoder (HAE) model, which is a synergy of a classical autoencoder (AE …”
    Volltext
    Journal Article
  4. 4

    Resource-efficient high-dimensional subspace teleportation with a quantum autoencoder von Zhang, Hui, Wan, Lingxiao, Haug, Tobias, Mok, Wai-Keong, Paesani, Stefano, Shi, Yuzhi, Cai, Hong, Chin, Lip Ket, Karim, Muhammad Faeyz, Xiao, Limin, Luo, Xianshu, Gao, Feng, Dong, Bin, Assad, Syed, Kim, M. S., Laing, Anthony, Kwek, Leong Chuan, Liu, Ai Qun

    ISSN: 2375-2548, 2375-2548
    Veröffentlicht: American Association for the Advancement of Science 07.10.2022
    Veröffentlicht in Science advances (07.10.2022)
    “… Quantum autoencoders serve as efficient means for quantum data compression. Here, we propose and demonstrate their use to reduce resource costs for quantum teleportation of subspaces in high-dimensional systems …”
    Volltext
    Journal Article
  5. 5
  6. 6

    Efficient Data Loading with Quantum Autoencoder von Wu, Siang-Ruei, Li, Chun-Tse, Cheng, Hao-Chung

    ISSN: 2379-190X
    Veröffentlicht: IEEE 04.06.2023
    “… In this work, we propose an efficient quantum autoencoder architecture that can construct a quantum state approximating the unknown classical distribution with high precision and with only linear circuit depth …”
    Volltext
    Tagungsbericht
  7. 7

    Quantum Autoencoder for Enhanced Fraud Detection in Imbalanced Credit Card Dataset von Huot, Chansreynich, Heng, Sovanmonynuth, Kim, Tae-Kyung, Han, Youngsun

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2024
    Veröffentlicht in IEEE access (2024)
    “… In response to these challenges, we propose a novel detection model utilizing Quantum AutoEncoders-based Fraud Detection (QAE-FD …”
    Volltext
    Journal Article
  8. 8

    Quantum autoencoder implementation of high-dimensional steganographic encoding for arbitrary quantum states von Hao, Chaolong, Ma, Quangong, Chen, Yaqi, Zhang, Hao, Qu, Dan

    ISSN: 1319-1578, 2213-1248, 1319-1578
    Veröffentlicht: Cham Springer International Publishing 01.10.2025
    “… We progressively explore Quantum Autoencoder (QAE) structures through three stages: starting from single-state scenarios without perturbation, advancing to perturbed conditions, and finally extending to multi-state tasks …”
    Volltext
    Journal Article
  9. 9

    Unsupervised beyond-standard-model event discovery at the LHC with a novel quantum autoencoder von Duffy, Callum, Hassanshahi, Mohammad, Jastrzebski, Marcin, Malik, Sarah

    ISSN: 2524-4906, 2524-4914, 2524-4914
    Veröffentlicht: Cham Springer International Publishing 01.06.2025
    Veröffentlicht in Quantum machine intelligence (01.06.2025)
    “… We introduce a novel quantum autoencoder circuit ansatz that is specifically designed for this task and demonstrates superior performance compared to previous approaches …”
    Volltext
    Journal Article
  10. 10
  11. 11

    Quantum autoencoders with enhanced data encoding von Bravo-Prieto, Carlos

    ISSN: 2632-2153, 2632-2153
    Veröffentlicht: 01.09.2021
    Veröffentlicht in Machine learning: science and technology (01.09.2021)
    “… We present the enhanced feature quantum autoencoder, or EF-QAE, a variational quantum algorithm capable of compressing quantum states of different models with higher fidelity …”
    Volltext
    Journal Article
  12. 12

    Anomaly Detection Based on Quantum Autoencoder von Li, Siqi, Zhang, Zikun, Zhu, Xun, Ou, Yanni, Xu, Kun

    ISSN: 2833-1052
    Veröffentlicht: IEEE 23.06.2025
    “… Quantum autoencoder (QAE) is a key tool in quantum machine learning and can be applied to areas such as dimensionality reduction and feature extraction [1 …”
    Volltext
    Tagungsbericht
  13. 13

    On compression rate of quantum autoencoders: Control design, numerical and experimental realization von Ma, Hailan, Huang, Chang-Jiang, Chen, Chunlin, Dong, Daoyi, Wang, Yuanlong, Wu, Re-Bing, Xiang, Guo-Yong

    ISSN: 0005-1098, 1873-2836
    Veröffentlicht: Elsevier Ltd 01.01.2023
    Veröffentlicht in Automatica (Oxford) (01.01.2023)
    “… Quantum autoencoders which aim at compressing quantum information in a low-dimensional latent space lie in the heart of automatic data compression in the field of quantum information …”
    Volltext
    Journal Article
  14. 14

    Noise-Assisted Quantum Autoencoder von Cao, Chenfeng, Wang, Xin

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 24.04.2021
    Veröffentlicht in arXiv.org (24.04.2021)
    “… Quantum autoencoder is an efficient variational quantum algorithm for quantum data compression …”
    Volltext
    Paper
  15. 15

    Optimized Quantum Autoencoder von Huang, Yibin, Yang, Muchun, Zhou, D L

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 12.04.2024
    Veröffentlicht in arXiv.org (12.04.2024)
    “… Quantum autoencoder (QAE) compresses a bipartite quantum state into its subsystem by a self-checking mechanism …”
    Volltext
    Paper
  16. 16

    Quantum deep learning-based anomaly detection for enhanced network security von Hdaib, Moe, Rajasegarar, Sutharshan, Pan, Lei

    ISSN: 2524-4906, 2524-4914
    Veröffentlicht: Cham Springer International Publishing 01.06.2024
    Veröffentlicht in Quantum machine intelligence (01.06.2024)
    “… Identifying and mitigating aberrant activities within the network traffic is important to prevent adverse consequences caused by cyber security incidents, …”
    Volltext
    Journal Article
  17. 17

    Hybrid Classical-Quantum Autoencoder for Anomaly Detection von Sakhnenko, Alona, O'Meara, Corey, Ghosh, Kumar J B, Mendl, Christian B, Cortiana, Giorgio, Bernabé-Moreno, Juan

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 16.12.2021
    Veröffentlicht in arXiv.org (16.12.2021)
    “… We propose a Hybrid classical-quantum Autoencoder (HAE) model, which is a synergy of a classical autoencoder (AE …”
    Volltext
    Paper
  18. 18

    Quantum deep learning-enhanced ethereum blockchain for cloud security: intrusion detection, fraud prevention, and secure data migration von Nagarjun, A. Venkata, Rajkumar, Sujatha

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 05.11.2025
    Veröffentlicht in Scientific reports (05.11.2025)
    “… Because of the rapid acceleration of cloud computing, data transfer security and intrusion detection in cloud networks have become emerging areas of concern …”
    Volltext
    Journal Article
  19. 19

    Achieving High-Efficiency Error-Correcting Transmission of Qutrits with On-Chip Quantum Autoencoder von Wang, Denghui, Ma, Haoran, Chen, Donghui, Ye, Liao, Ruan, Fanjie, Wang, Yuehai, Yang, Jianyi

    Veröffentlicht: Optica 30.03.2025
    “… We designed a programmable quantum autoencoder on a silicon photonic chip with nearly no compression loss, which enabled us to propose and implement a new highly efficient error-correcting …”
    Volltext
    Tagungsbericht
  20. 20

    Quantum neural network autoencoder and classifier applied to an industrial case study von Mangini, Stefano, Marruzzo, Alessia, Piantanida, Marco, Gerace, Dario, Bajoni, Daniele, Macchiavello, Chiara

    ISSN: 2524-4906, 2524-4914
    Veröffentlicht: Cham Springer International Publishing 01.12.2022
    Veröffentlicht in Quantum machine intelligence (01.12.2022)
    “… In this work, we propose a quantum pipeline, comprising a quantum autoencoder followed by a quantum classifier, which are used to first compress and then label classical data coming from a separator, i.e …”
    Volltext
    Journal Article