Suchergebnisse - "Proximal-gradient algorithm"

  1. 1

    A recent proximal gradient algorithm for convex minimization problem using double inertial extrapolations von Kesornprom, Suparat, Inkrong, Papatsara, Witthayarat, Uamporn, Cholamjiak, Prasit

    ISSN: 2473-6988, 2473-6988
    Veröffentlicht: AIMS Press 01.01.2024
    Veröffentlicht in AIMS mathematics (01.01.2024)
    “… In this study, we suggest a new class of forward-backward (FB) algorithms designed to solve convex minimization problems. Our method incorporates a linesearch …”
    Volltext
    Journal Article
  2. 2

    An inexact continuation accelerated proximal gradient algorithm for low n-rank tensor recovery von Liu, Huihui, Song, Zhanjie

    ISSN: 0020-7160, 1029-0265
    Veröffentlicht: Abingdon Taylor & Francis 03.07.2014
    Veröffentlicht in International journal of computer mathematics (03.07.2014)
    “… Furthermore, in order to solve the unconstrained nonsmooth convex optimization problem, an accelerated proximal gradient algorithm is proposed …”
    Volltext
    Journal Article
  3. 3

    Identifying Heterogeneous Effect Using Latent Supervised Clustering With Adaptive Fusion von Chen, Jingxiang, Tran-Dinh, Quoc, Kosorok, Michael R., Liu, Yufeng

    ISSN: 1061-8600, 1537-2715
    Veröffentlicht: United States Taylor & Francis 2021
    “… In particular, we formulate the problem as a regression problem with subject specific coefficients, and use adaptive fusion to cluster the coefficients into subpopulations …”
    Volltext
    Journal Article
  4. 4

    Incremental proximal gradient scheme with penalization for constrained composite convex optimization problems von Petrot, Narin, Nimana, Nimit

    ISSN: 0233-1934, 1029-4945
    Veröffentlicht: Philadelphia Taylor & Francis 03.06.2021
    Veröffentlicht in Optimization (03.06.2021)
    “… We consider the problem of minimizing a finite sum of convex functions subject to the set of minimizers of a convex differentiable function …”
    Volltext
    Journal Article
  5. 5

    An Inertial Proximal-Gradient Penalization Scheme for Constrained Convex Optimization Problems von Boţ, Radu Ioan, Csetnek, Ernö Robert, Nimana, Nimit

    ISSN: 2305-221X, 2305-2228, 2305-2228
    Veröffentlicht: Singapore Springer Singapore 01.03.2018
    Veröffentlicht in Vietnam journal of mathematics (01.03.2018)
    “… We propose a proximal-gradient algorithm with penalization terms and inertial and memory effects for minimizing the sum of a proper, convex, and lower semicontinuous and a convex differentiable …”
    Volltext
    Journal Article
  6. 6

    Stochastic proximal gradient methods for nonconvex problems in Hilbert spaces von Geiersbach, Caroline, Scarinci, Teresa

    ISSN: 1573-2894, 0926-6003, 1573-2894
    Veröffentlicht: New York, NY Springer US 01.04.2021
    Veröffentlicht in Computational optimization and applications (01.04.2021)
    “… For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to …”
    Volltext
    Journal Article
  7. 7

    Cauchy non-convex sparse feature selection method for the high-dimensional small-sample problem in motor imagery EEG decoding von Zhang, Shaorong, Wang, Qihui, Zhang, Benxin, Liang, Zhen, Zhang, Li, Li, Linling, Huang, Gan, Zhang, Zhiguo, Feng, Bao, Yu, Tianyou

    ISSN: 1662-453X, 1662-4548, 1662-453X
    Veröffentlicht: Lausanne Frontiers Research Foundation 03.11.2023
    Veröffentlicht in Frontiers in neuroscience (03.11.2023)
    “… By designing a proximal gradient algorithm, our proposed model achieves closer-to-unbiased estimation than existing models …”
    Volltext
    Journal Article
  8. 8

    An inexact quasi-Newton algorithm for large-scale ℓ1 optimization with box constraints von Cheng, Wanyou, LinPeng, Zhuanghan, Li, Donghui

    ISSN: 0168-9274, 1873-5460
    Veröffentlicht: Elsevier B.V 01.11.2023
    Veröffentlicht in Applied numerical mathematics (01.11.2023)
    “… The algorithm uses the identification technique of the proximal gradient algorithm to estimate the active set and free variables …”
    Volltext
    Journal Article
  9. 9

    Non-signal components minimization for sparse signal recovery von Xiang, Min, Zhang, Zhenyue

    ISSN: 0165-1684
    Veröffentlicht: Elsevier B.V 01.01.2025
    Veröffentlicht in Signal processing (01.01.2025)
    “… Additionally, an improved accelerated proximal gradient algorithm is provided to solve each non-signal components minimization problem penalized by the residual …”
    Volltext
    Journal Article
  10. 10

    Accelerated Graph Learning From Smooth Signals von Saboksayr, Seyed Saman, Mateos, Gonzalo

    ISSN: 1070-9908, 1558-2361
    Veröffentlicht: New York IEEE 2021
    Veröffentlicht in IEEE signal processing letters (2021)
    “… A fast dual-based proximal gradient algorithm is developed to efficiently tackle a strongly convex, smoothness-regularized network inverse problem known to yield high-quality graph solutions …”
    Volltext
    Journal Article
  11. 11

    A modified inertial proximal gradient method for minimization problems and applications von Kesornprom, Suparat, Cholamjiak, Prasit

    ISSN: 2473-6988, 2473-6988
    Veröffentlicht: AIMS Press 01.01.2022
    Veröffentlicht in AIMS mathematics (01.01.2022)
    “… In this paper, the aim is to design a new proximal gradient algorithm by using the inertial technique with adaptive stepsize for solving convex minimization problems and prove convergence …”
    Volltext
    Journal Article
  12. 12

    DISTRIBUTED PROXIMAL-GRADIENT METHOD FOR CONVEX OPTIMIZATION WITH INEQUALITY CONSTRAINTS von LI, JUEYOU, WU, CHANGZHI, WU, ZHIYOU, LONG, QIANG, WANG, XIANGYU

    ISSN: 1446-1811, 1446-8735
    Veröffentlicht: Cambridge, UK Cambridge University Press 01.10.2014
    Veröffentlicht in The ANZIAM journal (01.10.2014)
    “… -gradient algorithm over a time-changing connectivity network, and establish a convergence rate depending …”
    Volltext
    Journal Article
  13. 13

    An interior proximal gradient method for nonconvex optimization von De Marchi, Alberto, Themelis, Andreas

    ISSN: 2777-5860, 2777-5860
    Veröffentlicht: Université de Montpellier 09.07.2024
    Veröffentlicht in Open Journal of Mathematical Optimization (09.07.2024)
    “… that successfully addressed the convex case. Our interior proximal gradient algorithm benefits from warm starting, generates strictly feasible iterates with decreasing objective value, and returns after finitely many iterations a primal-dual …”
    Volltext
    Journal Article
  14. 14

    Joint Fairness Model with Applications to Risk Predictions for Under-represented Populations von Do, Hyungrok, Nandi, Shinjini, Putzel, Preston, Smyth, Padhraic, Zhong, Judy

    ISSN: 2331-8422, 2331-8422
    Veröffentlicht: United States Cornell University 10.05.2021
    Veröffentlicht in ArXiv.org (10.05.2021)
    “… In data collection for predictive modeling, under-representation of certain groups, based on gender, race/ethnicity, or age, may yield less-accurate …”
    Volltext
    Journal Article
  15. 15

    An interior proximal gradient method for nonconvex optimization von De Marchi, Alberto, Themelis, Andreas

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 29.01.2024
    Veröffentlicht in arXiv.org (29.01.2024)
    “… that successfully addressed the convex case. Our interior proximal gradient algorithm benefits from warm starting, generates strictly feasible iterates with decreasing objective value, and returns after finitely many iterations a primal-dual …”
    Volltext
    Paper
  16. 16

    Real-time Data-Driven Optimization Algorithms for Modern Power Systems von Ospina Sierra, Ana Maria

    ISBN: 9798380164849
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2023
    “… Power systems have experienced significant transformations in recent years driven by the integration of new technologies, such as renewable generation and …”
    Volltext
    Dissertation
  17. 17

    Stochastic Proximal Gradient Methods for Nonconvex Problems in Hilbert Spaces von Geiersbach, Caroline, Scarinci, Teresa

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 13.01.2021
    Veröffentlicht in arXiv.org (13.01.2021)
    “… For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to …”
    Volltext
    Paper
  18. 18

    Amalgamation-Based Statistical Learning for Compositional Data von Li, Yan

    ISBN: 9798382888699
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2021
    “… Such data do not admit the familiar Euclidean geometry and are typically of high dimension, in ated with excessive zeros, and subject to measurement errors …”
    Volltext
    Dissertation
  19. 19

    Machine Learning Techniques for Heterogeneous Data Sets von Chen, Jingxiang

    ISBN: 9780355179194, 0355179199
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2017
    “… Over the past few decades, machine learning tools are under rapid development in various application fields to support statistical decision making. In this …”
    Volltext
    Dissertation
  20. 20

    Accelerated Graph Learning from Smooth Signals von Seyed Saman Saboksayr, Mateos, Gonzalo

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 19.10.2021
    Veröffentlicht in arXiv.org (19.10.2021)
    “… A fast dual-based proximal gradient algorithm is developed to efficiently tackle a strongly convex, smoothness-regularized network inverse problem known to yield high-quality graph solutions …”
    Volltext
    Paper