Suchergebnisse - "Proximal-gradient algorithm"
-
1
A recent proximal gradient algorithm for convex minimization problem using double inertial extrapolations
ISSN: 2473-6988, 2473-6988Veröffentlicht: AIMS Press 01.01.2024Veröffentlicht in AIMS mathematics (01.01.2024)“… In this study, we suggest a new class of forward-backward (FB) algorithms designed to solve convex minimization problems. Our method incorporates a linesearch …”
Volltext
Journal Article -
2
An inexact continuation accelerated proximal gradient algorithm for low n-rank tensor recovery
ISSN: 0020-7160, 1029-0265Veröffentlicht: Abingdon Taylor & Francis 03.07.2014Veröffentlicht in International journal of computer mathematics (03.07.2014)“… Furthermore, in order to solve the unconstrained nonsmooth convex optimization problem, an accelerated proximal gradient algorithm is proposed …”
Volltext
Journal Article -
3
Identifying Heterogeneous Effect Using Latent Supervised Clustering With Adaptive Fusion
ISSN: 1061-8600, 1537-2715Veröffentlicht: United States Taylor & Francis 2021Veröffentlicht in Journal of computational and graphical statistics (2021)“… In particular, we formulate the problem as a regression problem with subject specific coefficients, and use adaptive fusion to cluster the coefficients into subpopulations …”
Volltext
Journal Article -
4
Incremental proximal gradient scheme with penalization for constrained composite convex optimization problems
ISSN: 0233-1934, 1029-4945Veröffentlicht: Philadelphia Taylor & Francis 03.06.2021Veröffentlicht in Optimization (03.06.2021)“… We consider the problem of minimizing a finite sum of convex functions subject to the set of minimizers of a convex differentiable function …”
Volltext
Journal Article -
5
An Inertial Proximal-Gradient Penalization Scheme for Constrained Convex Optimization Problems
ISSN: 2305-221X, 2305-2228, 2305-2228Veröffentlicht: Singapore Springer Singapore 01.03.2018Veröffentlicht in Vietnam journal of mathematics (01.03.2018)“… We propose a proximal-gradient algorithm with penalization terms and inertial and memory effects for minimizing the sum of a proper, convex, and lower semicontinuous and a convex differentiable …”
Volltext
Journal Article -
6
Stochastic proximal gradient methods for nonconvex problems in Hilbert spaces
ISSN: 1573-2894, 0926-6003, 1573-2894Veröffentlicht: New York, NY Springer US 01.04.2021Veröffentlicht in Computational optimization and applications (01.04.2021)“… For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to …”
Volltext
Journal Article -
7
Cauchy non-convex sparse feature selection method for the high-dimensional small-sample problem in motor imagery EEG decoding
ISSN: 1662-453X, 1662-4548, 1662-453XVeröffentlicht: Lausanne Frontiers Research Foundation 03.11.2023Veröffentlicht in Frontiers in neuroscience (03.11.2023)“… By designing a proximal gradient algorithm, our proposed model achieves closer-to-unbiased estimation than existing models …”
Volltext
Journal Article -
8
An inexact quasi-Newton algorithm for large-scale ℓ1 optimization with box constraints
ISSN: 0168-9274, 1873-5460Veröffentlicht: Elsevier B.V 01.11.2023Veröffentlicht in Applied numerical mathematics (01.11.2023)“… The algorithm uses the identification technique of the proximal gradient algorithm to estimate the active set and free variables …”
Volltext
Journal Article -
9
Non-signal components minimization for sparse signal recovery
ISSN: 0165-1684Veröffentlicht: Elsevier B.V 01.01.2025Veröffentlicht in Signal processing (01.01.2025)“… Additionally, an improved accelerated proximal gradient algorithm is provided to solve each non-signal components minimization problem penalized by the residual …”
Volltext
Journal Article -
10
Accelerated Graph Learning From Smooth Signals
ISSN: 1070-9908, 1558-2361Veröffentlicht: New York IEEE 2021Veröffentlicht in IEEE signal processing letters (2021)“… A fast dual-based proximal gradient algorithm is developed to efficiently tackle a strongly convex, smoothness-regularized network inverse problem known to yield high-quality graph solutions …”
Volltext
Journal Article -
11
A modified inertial proximal gradient method for minimization problems and applications
ISSN: 2473-6988, 2473-6988Veröffentlicht: AIMS Press 01.01.2022Veröffentlicht in AIMS mathematics (01.01.2022)“… In this paper, the aim is to design a new proximal gradient algorithm by using the inertial technique with adaptive stepsize for solving convex minimization problems and prove convergence …”
Volltext
Journal Article -
12
DISTRIBUTED PROXIMAL-GRADIENT METHOD FOR CONVEX OPTIMIZATION WITH INEQUALITY CONSTRAINTS
ISSN: 1446-1811, 1446-8735Veröffentlicht: Cambridge, UK Cambridge University Press 01.10.2014Veröffentlicht in The ANZIAM journal (01.10.2014)“… -gradient algorithm over a time-changing connectivity network, and establish a convergence rate depending …”
Volltext
Journal Article -
13
An interior proximal gradient method for nonconvex optimization
ISSN: 2777-5860, 2777-5860Veröffentlicht: Université de Montpellier 09.07.2024Veröffentlicht in Open Journal of Mathematical Optimization (09.07.2024)“… that successfully addressed the convex case. Our interior proximal gradient algorithm benefits from warm starting, generates strictly feasible iterates with decreasing objective value, and returns after finitely many iterations a primal-dual …”
Volltext
Journal Article -
14
Joint Fairness Model with Applications to Risk Predictions for Under-represented Populations
ISSN: 2331-8422, 2331-8422Veröffentlicht: United States Cornell University 10.05.2021Veröffentlicht in ArXiv.org (10.05.2021)“… In data collection for predictive modeling, under-representation of certain groups, based on gender, race/ethnicity, or age, may yield less-accurate …”
Volltext
Journal Article -
15
An interior proximal gradient method for nonconvex optimization
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 29.01.2024Veröffentlicht in arXiv.org (29.01.2024)“… that successfully addressed the convex case. Our interior proximal gradient algorithm benefits from warm starting, generates strictly feasible iterates with decreasing objective value, and returns after finitely many iterations a primal-dual …”
Volltext
Paper -
16
Real-time Data-Driven Optimization Algorithms for Modern Power Systems
ISBN: 9798380164849Veröffentlicht: ProQuest Dissertations & Theses 01.01.2023“… Power systems have experienced significant transformations in recent years driven by the integration of new technologies, such as renewable generation and …”
Volltext
Dissertation -
17
Stochastic Proximal Gradient Methods for Nonconvex Problems in Hilbert Spaces
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 13.01.2021Veröffentlicht in arXiv.org (13.01.2021)“… For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to …”
Volltext
Paper -
18
Amalgamation-Based Statistical Learning for Compositional Data
ISBN: 9798382888699Veröffentlicht: ProQuest Dissertations & Theses 01.01.2021“… Such data do not admit the familiar Euclidean geometry and are typically of high dimension, in ated with excessive zeros, and subject to measurement errors …”
Volltext
Dissertation -
19
Machine Learning Techniques for Heterogeneous Data Sets
ISBN: 9780355179194, 0355179199Veröffentlicht: ProQuest Dissertations & Theses 01.01.2017“… Over the past few decades, machine learning tools are under rapid development in various application fields to support statistical decision making. In this …”
Volltext
Dissertation -
20
Accelerated Graph Learning from Smooth Signals
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 19.10.2021Veröffentlicht in arXiv.org (19.10.2021)“… A fast dual-based proximal gradient algorithm is developed to efficiently tackle a strongly convex, smoothness-regularized network inverse problem known to yield high-quality graph solutions …”
Volltext
Paper

