Výsledky vyhľadávania - "Proceedings of the International Conference on Distributed Computing Systems"

Upresniť hľadanie
  1. 1

    DÏoT: A Federated Self-learning Anomaly Detection System for IoT Autor Nguyen, Thien Duc, Marchal, Samuel, Miettinen, Markus, Fereidooni, Hossein, Asokan, N., Sadeghi, Ahmad-Reza

    ISSN: 2575-8411
    Vydavateľské údaje: IEEE 01.07.2019
    “…IoT devices are increasingly deployed in daily life. Many of these devices are, however, vulnerable due to insecure design, implementation, and configuration…”
    Získať plný text
    Konferenčný príspevok..
  2. 2

    PhaseBeat: Exploiting CSI Phase Data for Vital Sign Monitoring with Commodity WiFi Devices Autor Xuyu Wang, Chao Yang, Shiwen Mao

    ISSN: 1063-6927
    Vydavateľské údaje: IEEE 01.06.2017
    “…Vital signs, such as respiration and heartbeat, are useful to health monitoring since such signals provide important clues of medical conditions. Effective…”
    Získať plný text
    Konferenčný príspevok..
  3. 3

    CryptoLock (and Drop It): Stopping Ransomware Attacks on User Data Autor Scaife, Nolen, Carter, Henry, Traynor, Patrick, Butler, Kevin R. B.

    ISSN: 1063-6927
    Vydavateľské údaje: IEEE 01.06.2016
    “…Ransomware is a growing threat that encrypts auser's files and holds the decryption key until a ransom ispaid by the victim. This type of malware is…”
    Získať plný text
    Konferenčný príspevok.. Journal Article
  4. 4

    BaFFLe: Backdoor Detection via Feedback-based Federated Learning Autor Andreina, Sebastien, Marson, Giorgia Azzurra, Mollering, Helen, Karame, Ghassan

    ISSN: 2575-8411
    Vydavateľské údaje: IEEE 01.07.2021
    “…Recent studies have shown that federated learning (FL) is vulnerable to poisoning attacks that inject a backdoor into the global model. These attacks are…”
    Získať plný text
    Konferenčný príspevok..
  5. 5

    AdapCC: Making Collective Communication in Distributed Machine Learning Adaptive Autor Zhao, Xiaoyang, Zhang, Zhe, Wu, Chuan

    ISSN: 2575-8411
    Vydavateľské údaje: IEEE 23.07.2024
    “…As deep learning (DL) models continue to grow in size, there is a pressing need for distributed model learning using a large number of devices (e.g., G PU s)…”
    Získať plný text
    Konferenčný príspevok..
  6. 6

    TrimCaching: Parameter-Sharing AI Model Caching in Wireless Edge Networks Autor Qu, Guanqiao, Lin, Zheng, Liu, Fangming, Chen, Xianhao, Huang, Kaibin

    ISSN: 2575-8411
    Vydavateľské údaje: IEEE 23.07.2024
    “…Next-generation mobile networks are expected to facilitate fast AI model downloading to end users. By caching models on edge servers, mobile networks can…”
    Získať plný text
    Konferenčný príspevok..
  7. 7

    Trading Private Range Counting over Big IoT Data Autor Cai, Zhipeng, He, Zaobo

    ISSN: 2575-8411
    Vydavateľské údaje: IEEE 01.07.2019
    “…Data privacy arises as one of the most important concerns, facing the pervasive commoditization of big data statistic analysis in Internet of Things (IoT)…”
    Získať plný text
    Konferenčný príspevok..
  8. 8

    On the Design of a Blockchain Platform for Clinical Trial and Precision Medicine Autor Zonyin Shae, Tsai, Jeffrey J. P.

    ISSN: 1063-6927
    Vydavateľské údaje: IEEE 01.06.2017
    “…This paper proposes a blockchain platform architecture for clinical trial and precision medicine and discusses various design aspects and provides some…”
    Získať plný text
    Konferenčný príspevok..
  9. 9

    GesturePrint: Enabling User Identification for mmWave-Based Gesture Recognition Systems Autor Xu, Lilin, Wang, Keyi, Gu, Chaojie, Guo, Xiuzhen, He, Shibo, Chen, Jiming

    ISSN: 2575-8411
    Vydavateľské údaje: IEEE 23.07.2024
    “…The millimeter-wave (mmWave) radar has been exploited for gesture recognition. However, existing mmWave-based gesture recognition methods cannot identify…”
    Získať plný text
    Konferenčný príspevok..
  10. 10

    Distributed Deep Neural Networks Over the Cloud, the Edge and End Devices Autor Teerapittayanon, Surat, McDanel, Bradley, Kung, H. T.

    ISSN: 1063-6927
    Vydavateľské údaje: IEEE 01.06.2017
    “…We propose distributed deep neural networks (DDNNs) over distributed computing hierarchies, consisting of the cloud, the edge (fog) and end devices. While…”
    Získať plný text
    Konferenčný príspevok..
  11. 11

    Adaptive Gradient Sparsification for Efficient Federated Learning: An Online Learning Approach Autor Han, Pengchao, Wang, Shiqiang, Leung, Kin K.

    ISSN: 2575-8411
    Vydavateľské údaje: IEEE 01.11.2020
    “…Federated learning (FL) is an emerging technique for training machine learning models using geographically dispersed data collected by local entities. It…”
    Získať plný text
    Konferenčný príspevok..
  12. 12

    Communication-Efficient Training Workload Balancing for Decentralized Multi-Agent Learning Autor Sajjadi Mohammadabadi, Seyed Mahmoud, Yang, Lei, Yan, Feng, Zhang, Junshan

    ISSN: 2575-8411
    Vydavateľské údaje: IEEE 23.07.2024
    “…Decentralized Multi-agent Learning (DML) enables collaborative model training while preserving data privacy. How-ever, inherent heterogeneity in agents'…”
    Získať plný text
    Konferenčný príspevok..
  13. 13

    IoT SENTINEL: Automated Device-Type Identification for Security Enforcement in IoT Autor Miettinen, Markus, Sadeghi, Ahmad-Reza, Marchal, Samuel, Asokan, N., Hafeez, Ibbad, Tarkoma, Sasu

    ISSN: 1063-6927
    Vydavateľské údaje: IEEE 01.06.2017
    “…With the rapid growth of the Internet-of-Things (IoT), concerns about the security of IoT devices have become prominent. Several vendors are producing…”
    Získať plný text
    Konferenčný príspevok..
  14. 14

    SPOT: Structure Patching and Overlap Tweaking for Effective Pipelining in Privacy-Preserving MLaaS with Tiny Clients Autor Xu, Xiangrui, Zhang, Qiao, Ning, Rui, Xin, Chunsheng, Wu, Hongyi

    ISSN: 2575-8411
    Vydavateľské údaje: IEEE 23.07.2024
    “…Machine Learning as a Service (MLaaS) has paved the way for numerous applications for resource-limited clients, such as IoT/mobile users. However, it raises a…”
    Získať plný text
    Konferenčný príspevok..
  15. 15

    Robust Categorical Data Clustering Guided by Multi-Granular Competitive Learning Autor Cai, Shenghong, Zhang, Yiqun, Luo, Xiaopeng, Cheung, Yiu-Ming, Jia, Hong, Liu, Peng

    ISSN: 2575-8411
    Vydavateľské údaje: IEEE 23.07.2024
    “…Data set composed of categorical features is very common in big data analysis tasks. Since categorical features are usually with a limited number of…”
    Získať plný text
    Konferenčný príspevok..
  16. 16

    Cooper: Cooperative Perception for Connected Autonomous Vehicles Based on 3D Point Clouds Autor Chen, Qi, Tang, Sihai, Yang, Qing, Fu, Song

    ISSN: 2575-8411
    Vydavateľské údaje: IEEE 01.07.2019
    “…Autonomous vehicles may make wrong decisions due to inaccurate detection and recognition. Therefore, an intelligent vehicle can combine its own data with that…”
    Získať plný text
    Konferenčný príspevok..
  17. 17

    LAVEA: Latency-Aware Video Analytics on Edge Computing Platform Autor Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi, Qun Li

    ISSN: 1063-6927
    Vydavateľské údaje: IEEE 01.06.2017
    “…We present LAVEA, a system built for edge computing, which offloads computation tasks between clients and edge nodes, collaborates nearby edge nodes, to…”
    Získať plný text
    Konferenčný príspevok..
  18. 18

    Enabling Privacy-Preserving Incentives for Mobile Crowd Sensing Systems Autor Haiming Jin, Lu Su, Bolin Ding, Nahrstedt, Klara, Borisov, Nikita

    ISSN: 1063-6927
    Vydavateľské údaje: IEEE 01.06.2016
    “…Recent years have witnessed the proliferation of mobile crowd sensing (MCS) systems that leverage the public crowd equipped with various mobile devices (e.g.,…”
    Získať plný text
    Konferenčný príspevok.. Journal Article
  19. 19

    CMFL: Mitigating Communication Overhead for Federated Learning Autor WANG, Luping, WANG, Wei, LI, Bo

    ISSN: 2575-8411
    Vydavateľské údaje: IEEE 01.07.2019
    “…Federated Learning enables mobile users to collaboratively learn a global prediction model by aggregating their individual updates without sharing the…”
    Získať plný text
    Konferenčný príspevok..
  20. 20

    Mahi-Mahi: Low-Latency Asynchronous BFT DAG-Based Consensus Autor Jovanovic, Philipp, Kokoris-Kogias, Lefteris, Kumara, Bryan, Sonnino, Alberto, Tennage, Pasindu, Zablotchi, Igor

    ISSN: 2575-8411
    Vydavateľské údaje: IEEE 21.07.2025
    “…We present Mahi-Mahi, the first asynchronous BFT consensus protocol that achieves sub-second latency in a wide-area network setting while processing over…”
    Získať plný text
    Konferenčný príspevok..