Suchergebnisse - "Proceedings of the IEEE/ACM International Conference on Computer-Aided Design"

  1. 1

    SurgeFuzz: Surge-Aware Directed Fuzzing for CPU Designs von Sugiyama, Yuichi, Matsuo, Reoma, Shioya, Ryota

    ISSN: 1558-2434
    Veröffentlicht: IEEE 28.10.2023
    “… Various verification methods have been proposed for bug detection in central processing unit (CPU) designs, yet their effectiveness remains insufficient. We …”
    Volltext
    Tagungsbericht
  2. 2

    Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs von Wu, Yannan Nellie, Emer, Joel S., Sze, Vivienne

    ISSN: 1558-2434
    Veröffentlicht: IEEE 01.11.2019
    “… With Moore's law slowing down and Dennard scaling ended, energy-efficient domain-specific accelerators, such as deep neural network (DNN) processors for …”
    Volltext
    Tagungsbericht
  3. 3

    GPT4AIGChip: Towards Next-Generation AI Accelerator Design Automation via Large Language Models von Fu, Yonggan, Zhang, Yongan, Yu, Zhongzhi, Li, Sixu, Ye, Zhifan, Li, Chaojian, Wan, Cheng, Lin, Yingyan Celine

    ISSN: 1558-2434
    Veröffentlicht: IEEE 28.10.2023
    “… The remarkable capabilities and intricate nature of Artificial Intelligence (AI) have dramatically escalated the imperative for specialized AI accelerators …”
    Volltext
    Tagungsbericht
  4. 4

    Optimal Layout Synthesis for Quantum Computing von Tan, Bochen, Cong, Jason

    ISSN: 1558-2434
    Veröffentlicht: Association on Computer Machinery 02.11.2020
    “… Recent years have witnessed the fast development of quantum computing. Researchers around the world are eager to run larger and larger quantum algorithms that …”
    Volltext
    Tagungsbericht
  5. 5

    MAGNet: A Modular Accelerator Generator for Neural Networks von Venkatesan, Rangharajan, Shao, Yakun Sophia, Wang, Miaorong, Clemons, Jason, Dai, Steve, Fojtik, Matthew, Keller, Ben, Klinefelter, Alicia, Pinckney, Nathaniel, Raina, Priyanka, Zhang, Yanqing, Zimmer, Brian, Dally, William J., Emer, Joel, Keckler, Stephen W., Khailany, Brucek

    ISSN: 1558-2434
    Veröffentlicht: IEEE 01.11.2019
    “… Deep neural networks have been adopted in a wide range of application domains, leading to high demand for inference accelerators. However, the high cost …”
    Volltext
    Tagungsbericht
  6. 6

    GAMMA: Automating the HW Mapping of DNN Models on Accelerators via Genetic Algorithm von Kao, Sheng-Chun, Krishna, Tushar

    ISSN: 1558-2434
    Veröffentlicht: Association on Computer Machinery 02.11.2020
    “… DNN layers are multi-dimensional loops that can be ordered, tiled, and scheduled in myriad ways across space and time on DNN accelerators. Each of these …”
    Volltext
    Tagungsbericht
  7. 7

    ReTransformer: ReRAM-based Processing-in-Memory Architecture for Transformer Acceleration von Yang, Xiaoxuan, Yan, Bonan, Li, Hai, Chen, Yiran

    ISSN: 1558-2434
    Veröffentlicht: Association on Computer Machinery 02.11.2020
    “… Transformer has emerged as a popular deep neural network (DNN) model for Neural Language Processing (NLP) applications and demonstrated excellent performance …”
    Volltext
    Tagungsbericht
  8. 8

    Caffeine: Towards uniformed representation and acceleration for deep convolutional neural networks von Chen Zhang, Zhenman Fang, Peipei Zhou, Peichen Pan, Jason Cong

    ISSN: 1558-2434
    Veröffentlicht: ACM 01.11.2016
    “… With the recent advancement of multilayer convolutional neural networks (CNN), deep learning has achieved amazing success in many areas, especially in visual …”
    Volltext
    Tagungsbericht
  9. 9

    Invited Paper: VerilogEval: Evaluating Large Language Models for Verilog Code Generation von Liu, Mingjie, Pinckney, Nathaniel, Khailany, Brucek, Ren, Haoxing

    ISSN: 1558-2434
    Veröffentlicht: IEEE 28.10.2023
    “… The increasing popularity of large language models (LLMs) has paved the way for their application in diverse domains. This paper proposes a benchmarking …”
    Volltext
    Tagungsbericht
  10. 10

    DNNExplorer: A Framework for Modeling and Exploring a Novel Paradigm of FPGA-based DNN Accelerator von Zhang, Xiaofan, Ye, Hanchen, Wang, Junsong, Lin, Yonghua, Xiong, Jinjun, Hwu, Wen-Mei, Chen, Deming

    ISSN: 1558-2434
    Veröffentlicht: Association on Computer Machinery 02.11.2020
    “… Existing FPGA-based DNN accelerators typically fall into two design paradigms. Either they adopt a generic reusable architecture to support different DNN …”
    Volltext
    Tagungsbericht
  11. 11

    How to Efficiently Handle Complex Values? Implementing Decision Diagrams for Quantum Computing von Zulehner, Alwin, Hillmich, Stefan, Wille, Robert

    ISSN: 1558-2434
    Veröffentlicht: IEEE 01.11.2019
    “… Quantum computing promises substantial speedups by exploiting quantum mechanical phenomena such as superposition and entanglement. Corresponding design methods …”
    Volltext
    Tagungsbericht
  12. 12

    Accurate Operation Delay Prediction for FPGA HLS Using Graph Neural Networks von Ustun, Ecenur, Deng, Chenhui, Pal, Debjit, Li, Zhijing, Zhang, Zhiru

    ISSN: 1558-2434
    Veröffentlicht: Association on Computer Machinery 02.11.2020
    “… Modern heterogeneous FPGA architectures incorporate a variety of hardened blocks for boosting the performance of arithmetic-intensive designs, such as DSP …”
    Volltext
    Tagungsbericht
  13. 13

    VLSI Placement Parameter Optimization using Deep Reinforcement Learning von Agnesina, Anthony, Chang, Kyungwook, Lim, Sung Kyu

    ISSN: 1558-2434
    Veröffentlicht: Association on Computer Machinery 02.11.2020
    “… The quality of placement is essential in the physical design flow. To achieve PPA goals, a human engineer typically spends a considerable amount of time tuning …”
    Volltext
    Tagungsbericht
  14. 14

    Accel-GCN: High-Performance GPU Accelerator Design for Graph Convolution Networks von Xie, Xi, Peng, Hongwu, Hasan, Amit, Huang, Shaoyi, Zhao, Jiahui, Fang, Haowen, Zhang, Wei, Geng, Tong, Khan, Omer, Ding, Caiwen

    ISSN: 1558-2434
    Veröffentlicht: IEEE 28.10.2023
    “… Graph Convolutional Networks (GCNs) are pivotal in extracting latent information from graph data across various domains, yet their acceleration on mainstream …”
    Volltext
    Tagungsbericht
  15. 15

    DeepGate2: Functionality-Aware Circuit Representation Learning von Shi, Zhengyuan, Pan, Hongyang, Khan, Sadaf, Li, Min, Liu, Yi, Huang, Junhua, Zhen, Hui-Ling, Yuan, Mingxuan, Chu, Zhufei, Xu, Qiang

    ISSN: 1558-2434
    Veröffentlicht: IEEE 28.10.2023
    “… Circuit representation learning aims to obtain neural repre-sentations of circuit elements and has emerged as a promising research direction that can be …”
    Volltext
    Tagungsbericht
  16. 16

    Mixed Precision Neural Architecture Search for Energy Efficient Deep Learning von Gong, Chengyue, Jiang, Zixuan, Wang, Dilin, Lin, Yibo, Liu, Qiang, Pan, David Z.

    ISSN: 1558-2434
    Veröffentlicht: IEEE 01.11.2019
    “… Large scale deep neural networks (DNNs) have achieved remarkable successes in various artificial intelligence applications. However, high computational …”
    Volltext
    Tagungsbericht
  17. 17

    ALWANN: Automatic Layer-Wise Approximation of Deep Neural Network Accelerators without Retraining von Mrazek, Vojtech, Vasicek, Zdenek, Sekanina, Lukas, Hanif, Muhammad Abdullah, Shafique, Muhammad

    ISSN: 1558-2434
    Veröffentlicht: IEEE 01.11.2019
    “… The state-of-the-art approaches employ approximate computing to reduce the energy consumption of DNN hardware. Approximate DNNs then require extensive …”
    Volltext
    Tagungsbericht
  18. 18

    BagNet: Berkeley Analog Generator with Layout Optimizer Boosted with Deep Neural Networks von Hakhamaneshi, Kourosh, Werblun, Nick, Abbeel, Pieter, Stojanovic, Vladimir

    ISSN: 1558-2434
    Veröffentlicht: IEEE 01.11.2019
    “… The discrepancy between post-layout and schematic simulation results continues to widen in analog design due in part to the domination of layout parasitics …”
    Volltext
    Tagungsbericht
  19. 19

    Robust GNN-Based Representation Learning for HLS von Sohrabizadeh, Atefeh, Bai, Yunsheng, Sun, Yizhou, Cong, Jason

    ISSN: 1558-2434
    Veröffentlicht: IEEE 28.10.2023
    “… The efficient and timely optimization of microarchitecture for a target application is hindered by the long evaluation runtime of a design candidate, creating …”
    Volltext
    Tagungsbericht
  20. 20

    Accelerating Framework of Transformer by Hardware Design and Model Compression Co-Optimization von Qi, Panjie, Sha, Edwin Hsing-Mean, Zhuge, Qingfeng, Peng, Hongwu, Huang, Shaoyi, Kong, Zhenglun, Song, Yuhong, Li, Bingbing

    ISSN: 1558-2434
    Veröffentlicht: IEEE 01.11.2021
    “… State-of-the-art Transformer-based models, with gigantic parameters, are difficult to be accommodated on resource constrained embedded devices. Moreover, with …”
    Volltext
    Tagungsbericht