Výsledky vyhledávání - "Proceedings / International Conference on Software Engineering"

Upřesnit hledání
  1. 1

    A Novel Neural Source Code Representation Based on Abstract Syntax Tree Autor Zhang, Jian, Wang, Xu, Zhang, Hongyu, Sun, Hailong, Wang, Kaixuan, Liu, Xudong

    ISSN: 1558-1225
    Vydáno: IEEE 01.05.2019
    “…Exploiting machine learning techniques for analyzing programs has attracted much attention. One key problem is how to represent code fragments well for…”
    Získat plný text
    Konferenční příspěvek
  2. 2

    A Neural Model for Generating Natural Language Summaries of Program Subroutines Autor LeClair, Alexander, Jiang, Siyuan, McMillan, Collin

    ISSN: 1558-1225
    Vydáno: IEEE 01.05.2019
    “…Source code summarization -- creating natural language descriptions of source code behavior -- is a rapidly-growing research topic with applications to…”
    Získat plný text
    Konferenční příspěvek
  3. 3

    Automated Program Repair in the Era of Large Pre-trained Language Models Autor Xia, Chunqiu Steven, Wei, Yuxiang, Zhang, Lingming

    ISSN: 1558-1225
    Vydáno: IEEE 01.05.2023
    “…Automated Program Repair (APR) aims to help developers automatically patch software bugs. However, current state-of-the-art traditional and learning-based APR…”
    Získat plný text
    Konferenční příspěvek
  4. 4

    CodaMosa: Escaping Coverage Plateaus in Test Generation with Pre-trained Large Language Models Autor Lemieux, Caroline, Inala, Jeevana Priya, Lahiri, Shuvendu K., Sen, Siddhartha

    ISSN: 1558-1225
    Vydáno: IEEE 01.05.2023
    “…Search-based software testing (SBST) generates high-coverage test cases for programs under test with a combination of test case generation and mutation. SBST's…”
    Získat plný text
    Konferenční příspěvek
  5. 5

    Automatically Learning Semantic Features for Defect Prediction Autor Song Wang, Taiyue Liu, Lin Tan

    ISSN: 1558-1225
    Vydáno: ACM 14.05.2016
    “…Software defect prediction, which predicts defective code regions, can help developers find bugs and prioritize their testing efforts. To build accurate…”
    Získat plný text
    Konferenční příspěvek
  6. 6

    Superion: Grammar-Aware Greybox Fuzzing Autor Wang, Junjie, Chen, Bihuan, Wei, Lei, Liu, Yang

    ISSN: 1558-1225
    Vydáno: IEEE 01.05.2019
    “…In recent years, coverage-based greybox fuzzing has proven itself to be one of the most effective techniques for finding security bugs in practice…”
    Získat plný text
    Konferenční příspěvek
  7. 7

    Using an LLM to Help with Code Understanding Autor Nam, Daye, Macvean, Andrew, Hellendoorn, Vincent, Vasilescu, Bogdan, Myers, Brad

    ISSN: 1558-1225
    Vydáno: ACM 14.04.2024
    “…Understanding code is challenging, especially when working in new and complex development environments. Code comments and documentation can help, but are…”
    Získat plný text
    Konferenční příspěvek
  8. 8

    Automated Repair of Programs from Large Language Models Autor Fan, Zhiyu, Gao, Xiang, Mirchev, Martin, Roychoudhury, Abhik, Tan, Shin Hwei

    ISSN: 1558-1225
    Vydáno: IEEE 01.05.2023
    “…Large language models such as Codex, have shown the capability to produce code for many programming tasks. However, the success rate of existing models is low,…”
    Získat plný text
    Konferenční příspěvek
  9. 9

    CURE: Code-Aware Neural Machine Translation for Automatic Program Repair Autor Jiang, Nan, Lutellier, Thibaud, Tan, Lin

    ISBN: 1665402962, 9781665402965
    ISSN: 1558-1225
    Vydáno: IEEE 01.05.2021
    “…Automatic program repair (APR) is crucial to improve software reliability. Recently, neural machine translation (NMT) techniques have been used to…”
    Získat plný text
    Konferenční příspěvek
  10. 10

    SourcererCC: Scaling Code Clone Detection to Big-Code Autor Sajnani, Hitesh, Saini, Vaibhav, Svajlenko, Jeffrey, Roy, Chanchal K., Lopes, Cristina V.

    ISSN: 1558-1225
    Vydáno: ACM 01.05.2016
    “…Despite a decade of active research, there has been a marked lack in clone detection techniques that scale to large repositories for detecting near-miss…”
    Získat plný text
    Konferenční příspěvek
  11. 11

    Retrieval-Based Prompt Selection for Code-Related Few-Shot Learning Autor Nashid, Noor, Sintaha, Mifta, Mesbah, Ali

    ISSN: 1558-1225
    Vydáno: IEEE 01.05.2023
    “…Large language models trained on massive code corpora can generalize to new tasks without the need for task-specific fine-tuning. In few-shot learning, these…”
    Získat plný text
    Konferenční příspěvek
  12. 12

    Angelix: Scalable Multiline Program Patch Synthesis via Symbolic Analysis Autor Mechtaev, Sergey, Jooyong Yi, Roychoudhury, Abhik

    ISSN: 1558-1225
    Vydáno: ACM 01.05.2016
    “…Since debugging is a time-consuming activity, automated program repair tools such as GenProg have garnered interest. A recent study revealed that the majority…”
    Získat plný text
    Konferenční příspěvek
  13. 13

    Impact of Code Language Models on Automated Program Repair Autor Jiang, Nan, Liu, Kevin, Lutellier, Thibaud, Tan, Lin

    ISSN: 1558-1225
    Vydáno: IEEE 01.05.2023
    “…Automated program repair (APR) aims to help developers improve software reliability by generating patches for buggy programs. Although many code language…”
    Získat plný text
    Konferenční příspěvek
  14. 14

    A Large-Scale Survey on the Usability of AI Programming Assistants: Successes and Challenges Autor Liang, Jenny T., Yang, Chenyang, Myers, Brad A.

    ISSN: 1558-1225
    Vydáno: ACM 14.04.2024
    “…The software engineering community recently has witnessed widespread deployment of AI programming assistants, such as GitHub Copilot. However, in practice,…”
    Získat plný text
    Konferenční příspěvek
  15. 15

    Large Language Models are Few-shot Testers: Exploring LLM-based General Bug Reproduction Autor Kang, Sungmin, Yoon, Juyeon, Yoo, Shin

    ISSN: 1558-1225
    Vydáno: IEEE 01.05.2023
    “…Many automated test generation techniques have been developed to aid developers with writing tests. To facilitate full automation, most existing techniques aim…”
    Získat plný text
    Konferenční příspěvek
  16. 16

    Fuzz4ALL: Universal Fuzzing with Large Language Models Autor Xia, Chunqiu Steven, Paltenghi, Matteo, Tian, Jia Le, Pradel, Michael, Zhang, Lingming

    ISSN: 1558-1225
    Vydáno: ACM 14.04.2024
    “…Fuzzing has achieved tremendous success in discovering bugs and vulnerabilities in various software systems. Systems under test (SUTs) that take in programming…”
    Získat plný text
    Konferenční příspěvek
  17. 17

    Studying the Usage of Text-To-Text Transfer Transformer to Support Code-Related Tasks Autor Mastropaolo, Antonio, Scalabrino, Simone, Cooper, Nathan, Nader Palacio, David, Poshyvanyk, Denys, Oliveto, Rocco, Bavota, Gabriele

    ISBN: 1665402962, 9781665402965
    ISSN: 1558-1225
    Vydáno: IEEE 01.05.2021
    “…Deep learning (DL) techniques are gaining more and more attention in the software engineering community. They have been used to support several code-related…”
    Získat plný text
    Konferenční příspěvek
  18. 18

    Guiding Deep Learning System Testing Using Surprise Adequacy Autor Kim, Jinhan, Feldt, Robert, Yoo, Shin

    ISSN: 0270-5257, 1558-1225
    Vydáno: IEEE 01.05.2019
    “…Deep Learning (DL) systems are rapidly being adopted in safety and security critical domains, urgently calling for ways to test their correctness and…”
    Získat plný text
    Konferenční příspěvek
  19. 19

    On Learning Meaningful Code Changes Via Neural Machine Translation Autor Tufano, Michele, Pantiuchina, Jevgenija, Watson, Cody, Bavota, Gabriele, Poshyvanyk, Denys

    ISSN: 1558-1225
    Vydáno: IEEE 01.05.2019
    “…Recent years have seen the rise of Deep Learning (DL) techniques applied to source code. Researchers have exploited DL to automate several development and…”
    Získat plný text
    Konferenční příspěvek
  20. 20

    Code Prediction by Feeding Trees to Transformers Autor Kim, Seohyun, Zhao, Jinman, Tian, Yuchi, Chandra, Satish

    ISBN: 1665402962, 9781665402965
    ISSN: 1558-1225
    Vydáno: IEEE 01.05.2021
    “…Code prediction, more specifically autocomplete, has become an essential feature in modern IDEs. Autocomplete is more effective when the desired next token is…”
    Získat plný text
    Konferenční příspěvek