Výsledky vyhledávání - "Proceedings (IEEE Conference on Intelligent Transportation Systems)"
-
1
Microscopic Traffic Simulation using SUMO
ISBN: 9781728103211, 1728103215ISSN: 2153-0017Vydáno: IEEE 01.11.2018Vydáno v Proceedings (IEEE Conference on Intelligent Transportation Systems) (01.11.2018)“…Microscopic traffic simulation is an invaluable tool for traffic research. In recent years, both the scope of research and the capabilities of the tools have…”
Získat plný text
Konferenční příspěvek -
2
The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems
ISBN: 9781728103211, 1728103215ISSN: 2153-0017Vydáno: IEEE 01.11.2018Vydáno v Proceedings (IEEE Conference on Intelligent Transportation Systems) (01.11.2018)“…Scenario-based testing for the safety validation of highly automated vehicles is a promising approach that is being examined in research and industry. This…”
Získat plný text
Konferenční příspěvek -
3
LGSVL Simulator: A High Fidelity Simulator for Autonomous Driving
Vydáno: IEEE 20.09.2020Vydáno v 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) (20.09.2020)“…Testing autonomous driving algorithms on real autonomous vehicles is extremely costly and many researchers and developers in the field cannot afford a real car…”
Získat plný text
Konferenční příspěvek -
4
Automated Speed and Lane Change Decision Making using Deep Reinforcement Learning
ISBN: 9781728103211, 1728103215ISSN: 2153-0009, 2153-0017, 2153-0017Vydáno: IEEE 01.11.2018Vydáno v Proceedings (IEEE Conference on Intelligent Transportation Systems) (01.11.2018)“…This paper introduces a method, based on deep reinforcement learning, for automatically generating a general purpose decision making function. A Deep Q-Network…”
Získat plný text
Konferenční příspěvek -
5
A Review on Cooperative Adaptive Cruise Control (CACC) Systems: Architectures, Controls, and Applications
ISBN: 9781728103211, 1728103215ISSN: 2153-0017Vydáno: IEEE 01.11.2018Vydáno v Proceedings (IEEE Conference on Intelligent Transportation Systems) (01.11.2018)“…Connected and automated vehicles (CAVs) have the potential to address the safety, mobility and sustainability issues of our current transportation systems…”
Získat plný text
Konferenční příspěvek -
6
Dark Model Adaptation: Semantic Image Segmentation from Daytime to Nighttime
ISBN: 9781728103211, 1728103215ISSN: 2153-0017Vydáno: IEEE 01.11.2018Vydáno v Proceedings (IEEE Conference on Intelligent Transportation Systems) (01.11.2018)“…This work addresses the problem of semantic image segmentation of nighttime scenes. Although considerable progress has been made in semantic image…”
Získat plný text
Konferenční příspěvek -
7
PandaSet: Advanced Sensor Suite Dataset for Autonomous Driving
Vydáno: IEEE 19.09.2021Vydáno v 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) (19.09.2021)“…The accelerating development of autonomous driving technology has placed greater demands on obtaining large amounts of high-quality data. Representative,…”
Získat plný text
Konferenční příspěvek -
8
OpenCDA: An Open Cooperative Driving Automation Framework Integrated with Co-Simulation
Vydáno: IEEE 19.09.2021Vydáno v 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) (19.09.2021)“…Although Cooperative Driving Automation (CDA) has attracted considerable attention in recent years, there remain numerous open challenges in this field. The…”
Získat plný text
Konferenční příspěvek -
9
Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural Network For Lidar 3D Vehicle Detection
ISBN: 9781728103211, 1728103215ISSN: 2153-0017Vydáno: IEEE 01.11.2018Vydáno v Proceedings (IEEE Conference on Intelligent Transportation Systems) (01.11.2018)“…To assure that an autonomous car is driving safely on public roads, its object detection module should not only work correctly, but show its prediction…”
Získat plný text
Konferenční příspěvek -
10
HOME: Heatmap Output for future Motion Estimation
Vydáno: IEEE 19.09.2021Vydáno v 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) (19.09.2021)“…In this paper, we propose HOME, a framework tackling the motion forecasting problem with an image output representing the probability distribution of the…”
Získat plný text
Konferenční příspěvek -
11
FusionPainting: Multimodal Fusion with Adaptive Attention for 3D Object Detection
Vydáno: IEEE 19.09.2021Vydáno v 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) (19.09.2021)“…Accurate detection of obstacles in 3D is an essential task for autonomous driving and intelligent transportation. In this work, we propose a general multimodal…”
Získat plný text
Konferenční příspěvek -
12
BirdNet: A 3D Object Detection Framework from LiDAR Information
ISBN: 9781728103211, 1728103215ISSN: 2153-0017Vydáno: IEEE 01.11.2018Vydáno v Proceedings (IEEE Conference on Intelligent Transportation Systems) (01.11.2018)“…Understanding driving situations regardless the conditions of the traffic scene is a cornerstone on the path towards autonomous vehicles; however, despite…”
Získat plný text
Konferenční příspěvek -
13
Model-free Deep Reinforcement Learning for Urban Autonomous Driving
Vydáno: IEEE 01.10.2019Vydáno v 2019 IEEE Intelligent Transportation Systems Conference (ITSC) (01.10.2019)“…Urban autonomous driving decision making is challenging due to complex road geometry and multi-agent interactions. Current decision making methods are mostly…”
Získat plný text
Konferenční příspěvek -
14
Traffic Signal Control Based on Reinforcement Learning with Graph Convolutional Neural Nets
ISBN: 9781728103211, 1728103215ISSN: 2153-0017Vydáno: IEEE 01.11.2018Vydáno v Proceedings (IEEE Conference on Intelligent Transportation Systems) (01.11.2018)“…Traffic signal control can mitigate traffic congestion and reduce travel time. A model-free reinforcement learning (RL) approach is a powerful framework for…”
Získat plný text
Konferenční příspěvek -
15
Lanelet2: A high-definition map framework for the future of automated driving
ISBN: 9781728103211, 1728103215ISSN: 2153-0017Vydáno: IEEE 01.11.2018Vydáno v Proceedings (IEEE Conference on Intelligent Transportation Systems) (01.11.2018)“…Although accurate and comprehensive maps are indispensable for highly automated driving, especially in complex urban scenarios, there are hardly any…”
Získat plný text
Konferenční příspěvek -
16
Travel time prediction with LSTM neural network
ISSN: 2153-0017Vydáno: IEEE 01.11.2016Vydáno v Proceedings (IEEE Conference on Intelligent Transportation Systems) (01.11.2016)“…Travel time is one of the key concerns among travelers before starting a trip and also an important indicator of traffic conditions. However, travel time…”
Získat plný text
Konferenční příspěvek -
17
High-level Decision Making for Safe and Reasonable Autonomous Lane Changing using Reinforcement Learning
ISBN: 9781728103211, 1728103215ISSN: 2153-0017Vydáno: IEEE 01.11.2018Vydáno v Proceedings (IEEE Conference on Intelligent Transportation Systems) (01.11.2018)“…Machine learning techniques have been shown to outperform many rule-based systems for the decision-making of autonomous vehicles. However, applying machine…”
Získat plný text
Konferenční příspěvek -
18
Towards blockchain-based intelligent transportation systems
ISSN: 2153-0017Vydáno: IEEE 01.11.2016Vydáno v Proceedings (IEEE Conference on Intelligent Transportation Systems) (01.11.2016)“…Blockchain, widely known as one of the disruptive technologies emerged in recent years, is experiencing rapid development and has the full potential of…”
Získat plný text
Konferenční příspěvek -
19
TJ4DRadSet: A 4D Radar Dataset for Autonomous Driving
Vydáno: IEEE 08.10.2022Vydáno v 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC) (08.10.2022)“…The next-generation high-resolution automotive radar (4D radar) can provide additional elevation measurement and denser point clouds, which has great potential…”
Získat plný text
Konferenční příspěvek -
20
Robust Deep Reinforcement Learning for Security and Safety in Autonomous Vehicle Systems
ISBN: 9781728103211, 1728103215ISSN: 2153-0017Vydáno: IEEE 01.11.2018Vydáno v Proceedings (IEEE Conference on Intelligent Transportation Systems) (01.11.2018)“…The dependence of autonomous vehicles (AVs) on sensors and communication links exposes them to cyber-physical (CP) attacks by adversaries that seek to take…”
Získat plný text
Konferenční příspěvek

