Výsledky vyhledávání - "Proceedings (IEEE Conference on Intelligent Transportation Systems)"

Upřesnit hledání
  1. 1

    Microscopic Traffic Simulation using SUMO Autor Lopez, Pablo Alvarez, Wiessner, Evamarie, Behrisch, Michael, Bieker-Walz, Laura, Erdmann, Jakob, Flotterod, Yun-Pang, Hilbrich, Robert, Lucken, Leonhard, Rummel, Johannes, Wagner, Peter

    ISBN: 9781728103211, 1728103215
    ISSN: 2153-0017
    Vydáno: IEEE 01.11.2018
    “…Microscopic traffic simulation is an invaluable tool for traffic research. In recent years, both the scope of research and the capabilities of the tools have…”
    Získat plný text
    Konferenční příspěvek
  2. 2

    The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems Autor Krajewski, Robert, Bock, Julian, Kloeker, Laurent, Eckstein, Lutz

    ISBN: 9781728103211, 1728103215
    ISSN: 2153-0017
    Vydáno: IEEE 01.11.2018
    “…Scenario-based testing for the safety validation of highly automated vehicles is a promising approach that is being examined in research and industry. This…”
    Získat plný text
    Konferenční příspěvek
  3. 3
  4. 4

    Automated Speed and Lane Change Decision Making using Deep Reinforcement Learning Autor Hoel, Carl-Johan, Wolff, Krister, Laine, Leo

    ISBN: 9781728103211, 1728103215
    ISSN: 2153-0009, 2153-0017, 2153-0017
    Vydáno: IEEE 01.11.2018
    “…This paper introduces a method, based on deep reinforcement learning, for automatically generating a general purpose decision making function. A Deep Q-Network…”
    Získat plný text
    Konferenční příspěvek
  5. 5

    A Review on Cooperative Adaptive Cruise Control (CACC) Systems: Architectures, Controls, and Applications Autor Wang, Ziran, Wu, Guoyuan, Barth, Matthew J.

    ISBN: 9781728103211, 1728103215
    ISSN: 2153-0017
    Vydáno: IEEE 01.11.2018
    “…Connected and automated vehicles (CAVs) have the potential to address the safety, mobility and sustainability issues of our current transportation systems…”
    Získat plný text
    Konferenční příspěvek
  6. 6

    Dark Model Adaptation: Semantic Image Segmentation from Daytime to Nighttime Autor Dai, Dengxin, Gool, Luc Van

    ISBN: 9781728103211, 1728103215
    ISSN: 2153-0017
    Vydáno: IEEE 01.11.2018
    “…This work addresses the problem of semantic image segmentation of nighttime scenes. Although considerable progress has been made in semantic image…”
    Získat plný text
    Konferenční příspěvek
  7. 7

    PandaSet: Advanced Sensor Suite Dataset for Autonomous Driving Autor Xiao, Pengchuan, Shao, Zhenlei, Hao, Steven, Zhang, Zishuo, Chai, Xiaolin, Jiao, Judy, Li, Zesong, Wu, Jian, Sun, Kai, Jiang, Kun, Wang, Yunlong, Yang, Diange

    Vydáno: IEEE 19.09.2021
    “…The accelerating development of autonomous driving technology has placed greater demands on obtaining large amounts of high-quality data. Representative,…”
    Získat plný text
    Konferenční příspěvek
  8. 8

    OpenCDA: An Open Cooperative Driving Automation Framework Integrated with Co-Simulation Autor Xu, Runsheng, Guo, Yi, Han, Xu, Xia, Xin, Xiang, Hao, Ma, Jiaqi

    Vydáno: IEEE 19.09.2021
    “…Although Cooperative Driving Automation (CDA) has attracted considerable attention in recent years, there remain numerous open challenges in this field. The…”
    Získat plný text
    Konferenční příspěvek
  9. 9

    Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural Network For Lidar 3D Vehicle Detection Autor Feng, Di, Rosenbaum, Lars, Dietmayer, Klaus

    ISBN: 9781728103211, 1728103215
    ISSN: 2153-0017
    Vydáno: IEEE 01.11.2018
    “…To assure that an autonomous car is driving safely on public roads, its object detection module should not only work correctly, but show its prediction…”
    Získat plný text
    Konferenční příspěvek
  10. 10

    HOME: Heatmap Output for future Motion Estimation Autor Gilles, Thomas, Sabatini, Stefano, Tsishkou, Dzmitry, Stanciulescu, Bogdan, Moutarde, Fabien

    Vydáno: IEEE 19.09.2021
    “…In this paper, we propose HOME, a framework tackling the motion forecasting problem with an image output representing the probability distribution of the…”
    Získat plný text
    Konferenční příspěvek
  11. 11

    FusionPainting: Multimodal Fusion with Adaptive Attention for 3D Object Detection Autor Xu, Shaoqing, Zhou, Dingfu, Fang, Jin, Yin, Junbo, Bin, Zhou, Zhang, Liangjun

    Vydáno: IEEE 19.09.2021
    “…Accurate detection of obstacles in 3D is an essential task for autonomous driving and intelligent transportation. In this work, we propose a general multimodal…”
    Získat plný text
    Konferenční příspěvek
  12. 12

    BirdNet: A 3D Object Detection Framework from LiDAR Information Autor Beltran, Jorge, Guindel, Carlos, Moreno, Francisco Miguel, Cruzado, Daniel, Garcia, Fernando, De La Escalera, Arturo

    ISBN: 9781728103211, 1728103215
    ISSN: 2153-0017
    Vydáno: IEEE 01.11.2018
    “…Understanding driving situations regardless the conditions of the traffic scene is a cornerstone on the path towards autonomous vehicles; however, despite…”
    Získat plný text
    Konferenční příspěvek
  13. 13

    Model-free Deep Reinforcement Learning for Urban Autonomous Driving Autor Chen, Jianyu, Yuan, Bodi, Tomizuka, Masayoshi

    Vydáno: IEEE 01.10.2019
    “…Urban autonomous driving decision making is challenging due to complex road geometry and multi-agent interactions. Current decision making methods are mostly…”
    Získat plný text
    Konferenční příspěvek
  14. 14

    Traffic Signal Control Based on Reinforcement Learning with Graph Convolutional Neural Nets Autor Nishi, Tomoki, Otaki, Keisuke, Hayakawa, Keiichiro, Yoshimura, Takayoshi

    ISBN: 9781728103211, 1728103215
    ISSN: 2153-0017
    Vydáno: IEEE 01.11.2018
    “…Traffic signal control can mitigate traffic congestion and reduce travel time. A model-free reinforcement learning (RL) approach is a powerful framework for…”
    Získat plný text
    Konferenční příspěvek
  15. 15

    Lanelet2: A high-definition map framework for the future of automated driving Autor Poggenhans, Fabian, Pauls, Jan-Hendrik, Janosovits, Johannes, Orf, Stefan, Naumann, Maximilian, Kuhnt, Florian, Mayr, Matthias

    ISBN: 9781728103211, 1728103215
    ISSN: 2153-0017
    Vydáno: IEEE 01.11.2018
    “…Although accurate and comprehensive maps are indispensable for highly automated driving, especially in complex urban scenarios, there are hardly any…”
    Získat plný text
    Konferenční příspěvek
  16. 16

    Travel time prediction with LSTM neural network Autor Duan, Yanjie, L.V., Yisheng, Wang, Fei-Yue

    ISSN: 2153-0017
    Vydáno: IEEE 01.11.2016
    “…Travel time is one of the key concerns among travelers before starting a trip and also an important indicator of traffic conditions. However, travel time…”
    Získat plný text
    Konferenční příspěvek
  17. 17

    High-level Decision Making for Safe and Reasonable Autonomous Lane Changing using Reinforcement Learning Autor Mirchevska, Branka, Pek, Christian, Werling, Moritz, Althoff, Matthias, Boedecker, Joschka

    ISBN: 9781728103211, 1728103215
    ISSN: 2153-0017
    Vydáno: IEEE 01.11.2018
    “…Machine learning techniques have been shown to outperform many rule-based systems for the decision-making of autonomous vehicles. However, applying machine…”
    Získat plný text
    Konferenční příspěvek
  18. 18

    Towards blockchain-based intelligent transportation systems Autor Yuan, Yong, Wang, Fei-Yue

    ISSN: 2153-0017
    Vydáno: IEEE 01.11.2016
    “…Blockchain, widely known as one of the disruptive technologies emerged in recent years, is experiencing rapid development and has the full potential of…”
    Získat plný text
    Konferenční příspěvek
  19. 19

    TJ4DRadSet: A 4D Radar Dataset for Autonomous Driving Autor Zheng, Lianqing, Ma, Zhixiong, Zhu, Xichan, Tan, Bin, Li, Sen, Long, Kai, Sun, Weiqi, Chen, Sihan, Zhang, Lu, Wan, Mengyue, Huang, Libo, Bai, Jie

    Vydáno: IEEE 08.10.2022
    “…The next-generation high-resolution automotive radar (4D radar) can provide additional elevation measurement and denser point clouds, which has great potential…”
    Získat plný text
    Konferenční příspěvek
  20. 20

    Robust Deep Reinforcement Learning for Security and Safety in Autonomous Vehicle Systems Autor Ferdowsi, Aidin, Challita, Ursula, Saad, Walid, Mandayam, Narayan B.

    ISBN: 9781728103211, 1728103215
    ISSN: 2153-0017
    Vydáno: IEEE 01.11.2018
    “…The dependence of autonomous vehicles (AVs) on sensors and communication links exposes them to cyber-physical (CP) attacks by adversaries that seek to take…”
    Získat plný text
    Konferenční příspěvek