Výsledky vyhledávání - "Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)"

Upřesnit hledání
  1. 1

    Masked-attention Mask Transformer for Universal Image Segmentation Autor Cheng, Bowen, Misra, Ishan, Schwing, Alexander G., Kirillov, Alexander, Girdhar, Rohit

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “…Image segmentation groups pixels with different semantics, e.g., category or instance membership. Each choice of semantics defines a task. While only the…”
    Získat plný text
    Konferenční příspěvek
  2. 2

    GLIGEN: Open-Set Grounded Text-to-Image Generation Autor Li, Yuheng, Liu, Haotian, Wu, Qingyang, Mu, Fangzhou, Yang, Jianwei, Gao, Jianfeng, Li, Chunyuan, Lee, Yong Jae

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2023
    “…Large-scale text-to-image diffusion models have made amazing advances. However, the status quo is to use text input alone, which can impede controllability. In…”
    Získat plný text
    Konferenční příspěvek
  3. 3

    Bottleneck Transformers for Visual Recognition Autor Srinivas, Aravind, Lin, Tsung-Yi, Parmar, Niki, Shlens, Jonathon, Abbeel, Pieter, Vaswani, Ashish

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2021
    “…We present BoTNet, a conceptually simple yet powerful backbone architecture that incorporates self-attention for multiple computer vision tasks including image…”
    Získat plný text
    Konferenční příspěvek
  4. 4

    Dense Contrastive Learning for Self-Supervised Visual Pre-Training Autor Wang, Xinlong, Zhang, Rufeng, Shen, Chunhua, Kong, Tao, Li, Lei

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2021
    “…To date, most existing self-supervised learning methods are designed and optimized for image classification. These pre-trained models can be sub-optimal for…”
    Získat plný text
    Konferenční příspěvek
  5. 5

    Deformable ConvNets V2: More Deformable, Better Results Autor Zhu, Xizhou, Hu, Han, Lin, Stephen, Dai, Jifeng

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2019
    “…The superior performance of Deformable Convolutional Networks arises from its ability to adapt to the geometric variations of objects. Through an examination…”
    Získat plný text
    Konferenční příspěvek
  6. 6

    Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection Autor Haliassos, Alexandros, Vougioukas, Konstantinos, Petridis, Stavros, Pantic, Maja

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2021
    “…Although current deep learning-based face forgery detectors achieve impressive performance in constrained scenarios, they are vulnerable to samples created by…”
    Získat plný text
    Konferenční příspěvek
  7. 7

    Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks Autor Dong, Yinpeng, Pang, Tianyu, Su, Hang, Zhu, Jun

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2019
    “…Deep neural networks are vulnerable to adversarial examples, which can mislead classifiers by adding imperceptible perturbations. An intriguing property of…”
    Získat plný text
    Konferenční příspěvek
  8. 8

    TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation Autor Zhang, Wenqiang, Huang, Zilong, Luo, Guozhong, Chen, Tao, Wang, Xinggang, Liu, Wenyu, Yu, Gang, Shen, Chunhua

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “…Although vision transformers (ViTs) have achieved great success in computer vision, the heavy computational cost hampers their applications to dense prediction…”
    Získat plný text
    Konferenční příspěvek
  9. 9

    Multi-class Token Transformer for Weakly Supervised Semantic Segmentation Autor Xu, Lian, Ouyang, Wanli, Bennamoun, Mohammed, Boussaid, Farid, Xu, Dan

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “…This paper proposes a new transformer-based framework to learn class-specific object localization maps as pseudo labels for weakly supervised semantic…”
    Získat plný text
    Konferenční příspěvek
  10. 10

    Causality Inspired Representation Learning for Domain Generalization Autor Lv, Fangrui, Liang, Jian, Li, Shuang, Zang, Bin, Liu, Chi Harold, Wang, Ziteng, Liu, Di

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “…Domain generalization (DG) is essentially an out-of-distribution problem, aiming to generalize the knowledge learned from multiple source domains to an unseen…”
    Získat plný text
    Konferenční příspěvek
  11. 11

    Deformable Siamese Attention Networks for Visual Object Tracking Autor Yu, Yuechen, Xiong, Yilei, Huang, Weilin, Scott, Matthew R.

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2020
    “…Siamese-based trackers have achieved excellent performance on visual object tracking. However, the target template is not updated online, and the features of…”
    Získat plný text
    Konferenční příspěvek
  12. 12

    Google Landmarks Dataset v2 - A Large-Scale Benchmark for Instance-Level Recognition and Retrieval Autor Weyand, Tobias, Araujo, Andre, Cao, Bingyi, Sim, Jack

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2020
    “…While image retrieval and instance recognition techniques are progressing rapidly, there is a need for challenging datasets to accurately measure their…”
    Získat plný text
    Konferenční příspěvek
  13. 13

    Deep Snake for Real-Time Instance Segmentation Autor Peng, Sida, Jiang, Wen, Pi, Huaijin, Li, Xiuli, Bao, Hujun, Zhou, Xiaowei

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2020
    “…This paper introduces a novel contour-based approach named deep snake for real-time instance segmentation. Unlike some recent methods that directly regress the…”
    Získat plný text
    Konferenční příspěvek
  14. 14

    MobileOne: An Improved One millisecond Mobile Backbone Autor Vasu, Pavan Kumar Anasosalu, Gabriel, James, Zhu, Jeff, Tuzel, Oncel, Ranjan, Anurag

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2023
    “…Efficient neural network backbones for mobile devices are often optimized for metrics such as FLOPs or parameter count. However, these metrics may not…”
    Získat plný text
    Konferenční příspěvek
  15. 15

    Token Contrast for Weakly-Supervised Semantic Segmentation Autor Ru, Lixiang, Zheng, Heliang, Zhan, Yibing, Du, Bo

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2023
    “…Weakly-Supervised Semantic Segmentation (WSSS) using image-level labels typically utilizes Class Activation Map (CAM) to generate the pseudo labels. Limited by…”
    Získat plný text
    Konferenční příspěvek
  16. 16

    Finding Task-Relevant Features for Few-Shot Learning by Category Traversal Autor Li, Hongyang, Eigen, David, Dodge, Samuel, Zeiler, Matthew, Wang, Xiaogang

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2019
    “…Few-shot learning is an important area of research. Conceptually, humans are readily able to understand new concepts given just a few examples, while in more…”
    Získat plný text
    Konferenční příspěvek
  17. 17

    Progressively Generating Better Initial Guesses Towards Next Stages for High-Quality Human Motion Prediction Autor Ma, Tiezheng, Nie, Yongwei, Long, Chengjiang, Zhang, Qing, Li, Guiqing

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2022
    “…This paper presents a high-quality human motion pre-diction method that accurately predicts future human poses given observed ones. Our method is based on the…”
    Získat plný text
    Konferenční příspěvek
  18. 18

    Wavelet Integrated CNNs for Noise-Robust Image Classification Autor Li, Qiufu, Shen, Linlin, Guo, Sheng, Lai, Zhihui

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2020
    “…Convolutional Neural Networks (CNNs) are generally prone to noise interruptions, i.e., small image noise can cause drastic changes in the output. To suppress…”
    Získat plný text
    Konferenční příspěvek
  19. 19

    DG-Font: Deformable Generative Networks for Unsupervised Font Generation Autor Xie, Yangchen, Chen, Xinyuan, Sun, Li, Lu, Yue

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2021
    “…Font generation is a challenging problem especially for some writing systems that consist of a large number of characters and has attracted a lot of attention…”
    Získat plný text
    Konferenční příspěvek
  20. 20

    Partial Order Pruning: For Best Speed/Accuracy Trade-Off in Neural Architecture Search Autor Li, Xin, Zhou, Yiming, Pan, Zheng, Feng, Jiashi

    ISSN: 1063-6919
    Vydáno: IEEE 01.06.2019
    “…Achieving good speed and accuracy trade-off on a target platform is very important in deploying deep neural networks in real world scenarios. However, most…”
    Získat plný text
    Konferenční příspěvek