Suchergebnisse - "Optimization methods; Recognition: detection"

  • Treffer 1 - 7 von 7
Treffer weiter einschränken
  1. 1

    SpotTune: Transfer Learning Through Adaptive Fine-Tuning von Guo, Yunhui, Shi, Honghui, Kumar, Abhishek, Grauman, Kristen, Rosing, Tajana, Feris, Rogerio

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2019
    “… Transfer learning, which allows a source task to affect the inductive bias of the target task, is widely used in computer vision. The typical way of conducting …”
    Volltext
    Tagungsbericht
  2. 2

    Learning Not to Learn: Training Deep Neural Networks With Biased Data von Kim, Byungju, Kim, Hyunwoo, Kim, Kyungsu, Kim, Sungjin, Kim, Junmo

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2019
    “… We propose a novel regularization algorithm to train deep neural networks, in which data at training time is severely biased. Since a neural network …”
    Volltext
    Tagungsbericht
  3. 3

    PPDL: Predicate Probability Distribution based Loss for Unbiased Scene Graph Generation von Li, Wei, Zhang, Haiwei, Bai, Qijie, Zhao, Guoqing, Jiang, Ning, Yuan, Xiaojie

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… Scene Graph Generation (SGG) has attracted more and more attention from visual researchers in recent years, since Scene Graph (SG) is valuable in many …”
    Volltext
    Tagungsbericht
  4. 4

    Deeply-Supervised Knowledge Synergy von Sun, Dawei, Yao, Anbang, Zhou, Aojun, Zhao, Hao

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2019
    “… Convolutional Neural Networks (CNNs) have become deeper and more complicated compared with the pioneering AlexNet. However, current prevailing training scheme …”
    Volltext
    Tagungsbericht
  5. 5

    P2SGrad: Refined Gradients for Optimizing Deep Face Models von Zhang, Xiao, Zhao, Rui, Yan, Junjie, Gao, Mengya, Qiao, Yu, Wang, Xiaogang, Li, Hongsheng

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2019
    “… Cosine-based softmax losses significantly improve the performance of deep face recognition networks. However, these losses always include sensitive …”
    Volltext
    Tagungsbericht
  6. 6

    A Local Block Coordinate Descent Algorithm for the CSC Model von Zisselman, Ev, Sulam, Jeremias, Elad, Michael

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2019
    “… The Convolutional Sparse Coding (CSC) model has recently gained considerable traction in the signal and image processing communities. By providing a global, …”
    Volltext
    Tagungsbericht
  7. 7

    AME: Attention and Memory Enhancement in Hyper-Parameter Optimization von Xu, Nuo, Chang, Jianlong, Nie, Xing, Huo, Chunlei, Xiang, Shiming, Pan, Chunhong

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… Training Deep Neural Networks (DNNs) is inherently subject to sensitive hyper-parameters and untimely feedbacks of performance evaluation. To solve these two …”
    Volltext
    Tagungsbericht