Suchergebnisse - "Multiple-Instance Learning Algorithms"

  1. 1

    Multiple-Instance Learning Algorithms for Computer-Aided Detection von Dundar, M. Murat, Fung, Glenn, Krishnapuram, Balaji, Rao, R. Bharat

    ISSN: 0018-9294, 1558-2531
    Veröffentlicht: United States IEEE 01.03.2008
    Veröffentlicht in IEEE transactions on biomedical engineering (01.03.2008)
    “… Many computer-aided diagnosis (CAD) problems can be best modelled as a multiple-instance learning (MIL) problem with unbalanced data, i.e., the training data …”
    Volltext
    Journal Article
  2. 2

    The KMeansGraphMIL Model: A Weakly Supervised Multiple Instance Learning Model for Predicting Colorectal Cancer Tumor Mutational Burden von Chen, Linghao, Xiao, Huiling, Jiang, Jiale, Li, Bing, Liu, Weixiang, Huang, Wensheng

    ISSN: 1525-2191, 1525-2191
    Veröffentlicht: United States 01.04.2025
    Veröffentlicht in The American journal of pathology (01.04.2025)
    “… Colorectal cancer (CRC) is one of the top three most lethal malignancies worldwide, posing a significant threat to human health. Recently proposed …”
    Weitere Angaben
    Journal Article
  3. 3

    Beyond accuracy: Quantifying the reliability of multiple instance learning for whole slide image classification von Keshvarikhojasteh, Hassan, Aubreville, Marc, Bertram, Christof A, Pluim, Josien P W, Veta, Mitko

    ISSN: 1932-6203
    Veröffentlicht: United States Public Library of Science 01.12.2025
    Veröffentlicht in PloS one (01.12.2025)
    “… Machine learning models have become integral to many fields, but their reliability, defined as producing dependable, trustworthy, and domain-consistent …”
    Volltext
    Journal Article
  4. 4

    CAMIL: channel attention-based multiple instance learning for whole slide image classification von Mao, Jinyang, Xu, Junlin, Tang, Xianfang, Liu, Yongjin, Zhao, Heaven, Tian, Geng, Yang, Jialiang

    ISSN: 1367-4811, 1367-4811
    Veröffentlicht: England Oxford University Press 04.02.2025
    Veröffentlicht in Bioinformatics (Oxford, England) (04.02.2025)
    “… Motivation The classification task based on whole-slide images (WSIs) is a classic problem in computational pathology. Multiple instance learning (MIL) …”
    Volltext
    Journal Article
  5. 5

    Disentangled Pseudo-Bag Augmentation for Whole Slide Image Multiple Instance Learning von Dong, Jiuyang, Jiang, Junjun, Jiang, Kui, Li, Jiahan, Cai, Linghan, Zhang, Yongbing

    ISSN: 0278-0062, 1558-254X, 1558-254X
    Veröffentlicht: United States IEEE 01.11.2025
    Veröffentlicht in IEEE transactions on medical imaging (01.11.2025)
    “… As the predominant approach for pathological whole slide image (WSI) classification, multiple instance learning (MIL) methods struggle with limited labeled …”
    Volltext
    Journal Article
  6. 6
  7. 7

    When multiple instance learning meets foundation models: Advancing histological whole slide image analysis von Xu, Hongming, Wang, Mingkang, Shi, Duanbo, Qin, Huamin, Zhang, Yunpeng, Liu, Zaiyi, Madabhushi, Anant, Gao, Peng, Cong, Fengyu, Lu, Cheng

    ISSN: 1361-8415, 1361-8423, 1361-8423
    Veröffentlicht: Netherlands Elsevier B.V 01.04.2025
    Veröffentlicht in Medical image analysis (01.04.2025)
    “… Deep multiple instance learning (MIL) pipelines are the mainstream weakly supervised learning methodologies for whole slide image (WSI) classification …”
    Volltext
    Journal Article
  8. 8

    Spatial Mapping of Gene Signatures in Hematoxylin and Eosin-Stained Images: A Proof of Concept for Interpretable Predictions Using Additive Multiple Instance Learning von Markey, Miles, Kim, Juhyun, Goldstein, Zvi, Gerardin, Ylaine, Brosnan-Cashman, Jacqueline, Javed, Syed Ashar, Juyal, Dinkar, Pagidela, Harshith, Yu, Limin, Rahsepar, Bahar, Abel, John, Hennek, Stephanie, Khosla, Archit, Taylor-Weiner, Amaro, Parmar, Chintan

    ISSN: 1530-0285, 1530-0285
    Veröffentlicht: United States 01.08.2025
    Veröffentlicht in Modern pathology (01.08.2025)
    “… The relative abundance of cancer-associated fibroblast (CAF) subtypes influences a tumor's response to treatment, especially immunotherapy. However, the gene …”
    Weitere Angaben
    Journal Article
  9. 9

    Optimized multiple instance learning for brain tumor classification using weakly supervised contrastive learning von Lu, Kaoyan, Lin, Shiyu, Xue, Kaiwen, Huang, Duoxi, Ji, Yanghong

    ISSN: 0010-4825, 1879-0534, 1879-0534
    Veröffentlicht: United States Elsevier Ltd 01.06.2025
    Veröffentlicht in Computers in biology and medicine (01.06.2025)
    “… Brain tumors have a great impact on patients’ quality of life and accurate histopathological classification of brain tumors is crucial for patients’ prognosis …”
    Volltext
    Journal Article
  10. 10

    EpicPred: predicting phenotypes driven by epitope-binding TCRs using attention-based multiple instance learning von Jeon, Jaemin, Yu, Suwan, Lee, Sangam, Kim, Sang Cheol, Jo, Hye-Yeong, Jung, Inuk, Kim, Kwangsoo

    ISSN: 1367-4811, 1367-4803, 1367-4811
    Veröffentlicht: England Oxford University Press 04.03.2025
    Veröffentlicht in Bioinformatics (Oxford, England) (04.03.2025)
    “… Motivation Correctly identifying epitope-binding T-cell receptors (TCRs) is important to both understand their underlying biological mechanism in association …”
    Volltext
    Journal Article
  11. 11

    Enhanced Multiple Instance Learning for Breast Cancer Detection in Mammography: Adaptive Patching, Advanced Pooling, and Deep Supervision von Sarwar, Fareeha, Garrido, Nuno Miguel de Figueiredo, Sebastiao, Pedro, Silveira, Margarida

    ISSN: 2694-0604
    Veröffentlicht: United States 01.07.2025
    “… This paper addresses the challenge of weakly supervised learning for breast cancer detection in mammography by introducing an Enhanced Embedded Space MI-Net …”
    Weitere Angaben
    Journal Article
  12. 12

    FR-MIL: Distribution Re-Calibration-Based Multiple Instance Learning With Transformer for Whole Slide Image Classification von Chikontwe, Philip, Kim, Meejeong, Jeong, Jaehoon, Jung Sung, Hyun, Go, Heounjeong, Jeong Nam, Soo, Park, Sang Hyun

    ISSN: 0278-0062, 1558-254X, 1558-254X
    Veröffentlicht: United States IEEE 01.01.2025
    Veröffentlicht in IEEE transactions on medical imaging (01.01.2025)
    “… In digital pathology, whole slide images (WSI) are crucial for cancer prognostication and treatment planning. WSI classification is generally addressed using …”
    Volltext
    Journal Article
  13. 13

    AttriMIL: Revisiting attention-based multiple instance learning for whole-slide pathological image classification from a perspective of instance attributes von Cai, Linghan, Huang, Shenjin, Zhang, Ye, Lu, Jinpeng, Zhang, Yongbing

    ISSN: 1361-8415, 1361-8423, 1361-8423
    Veröffentlicht: Netherlands Elsevier B.V 01.07.2025
    Veröffentlicht in Medical image analysis (01.07.2025)
    “… Multiple instance learning (MIL) is a powerful approach for whole-slide pathological image (WSI) analysis, particularly suited for processing …”
    Volltext
    Journal Article
  14. 14

    KS-TMIL: A K-Stage Transformer approach with multiple instance learning model for ovarian cancer subtype classification von Sai, Marreddi Jayanth, Punn, Narinder Singh

    ISSN: 0010-4825, 1879-0534, 1879-0534
    Veröffentlicht: United States Elsevier Ltd 01.09.2025
    Veröffentlicht in Computers in biology and medicine (01.09.2025)
    “… Existing multiple instance learning (MIL) methods treat whole slide image (WSI) as collections of independent patches, neglecting these crucial spatial and …”
    Volltext
    Journal Article
  15. 15

    A cluster attention-based multiple instance learning network for enhancing histopathological image interpretation von Ko, Seokhwan, Ando, Yu, Kim, Moonsik, Park, Nora Jee-Young, Han, Hyungsoo, Park, Ji Young, Cho, Junghwan

    ISSN: 0010-4825, 1879-0534, 1879-0534
    Veröffentlicht: United States Elsevier Ltd 01.07.2025
    Veröffentlicht in Computers in biology and medicine (01.07.2025)
    “… Histopathological diagnosis involves examining abnormal architectural patterns and cellular-level changes. Whole slide images (WSIs) provide comprehensive …”
    Volltext
    Journal Article
  16. 16

    Incorporating hierarchical information into multiple instance learning for patient phenotype prediction with single-cell RNA-sequencing data von Do, Chau, Lähdesmäki, Harri

    ISSN: 1367-4803, 1367-4811, 1367-4811
    Veröffentlicht: England Oxford Publishing Limited (England) 01.07.2025
    Veröffentlicht in Bioinformatics (Oxford, England) (01.07.2025)
    “… Multiple instance learning (MIL) provides a structured approach to patient phenotype prediction with single-cell RNA-sequencing (scRNA-seq) data. However, …”
    Volltext
    Journal Article
  17. 17

    Weakly Supervised Multiple Instance Learning Model With Generalization Ability for Clinical Adenocarcinoma Screening on Serous Cavity Effusion Pathology von Zhang, Yupeng, Zhu, Xiaolong, Zhong, Li, Wu, Jingjing, Chen, Jianling, Yang, Hongqin, Zhang, Sheng, Wang, Kun, Zeng, Saifan

    ISSN: 1530-0285, 1530-0285
    Veröffentlicht: United States 01.02.2025
    Veröffentlicht in Modern pathology (01.02.2025)
    “… Accurate and rapid screening of adenocarcinoma cells in serous cavity effusion is vital in diagnosing the stage of metastatic tumors and providing prompt …”
    Weitere Angaben
    Journal Article
  18. 18

    S2L-CM: Scribble-supervised nuclei segmentation in histopathology images using contrastive regularization and pixel-level multiple instance learning von Oh, Hyun-Jic, Min, Seonghui, Jeong, Won-Ki

    ISSN: 0010-4825, 1879-0534, 1879-0534
    Veröffentlicht: United States Elsevier Ltd 01.06.2025
    Veröffentlicht in Computers in biology and medicine (01.06.2025)
    “… Deep learning-based pathology nuclei segmentation algorithms have demonstrated remarkable performance. Conventional methods mostly focus on supervised …”
    Volltext
    Journal Article
  19. 19

    CoD-MIL: Chain-of-Diagnosis Prompting Multiple Instance Learning for Whole Slide Image Classification von Shi, Jiangbo, Li, Chen, Gong, Tieliang, Wang, Chunbao, Fu, Huazhu

    ISSN: 0278-0062, 1558-254X, 1558-254X
    Veröffentlicht: United States IEEE 01.03.2025
    Veröffentlicht in IEEE transactions on medical imaging (01.03.2025)
    “… Multiple instance learning (MIL) has emerged as a prominent paradigm for processing the whole slide image with pyramid structure and giga-pixel size in digital …”
    Volltext
    Journal Article
  20. 20

    DepressionMIGNN: A Multiple-Instance Learning-Based Depression Detection Model with Graph Neural Networks von Zhao, Shiwen, Zhang, Yunze, Su, Yikai, Su, Kaifeng, Liu, Jiemin, Wang, Tao, Yu, Shiqi

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 21.07.2025
    Veröffentlicht in Sensors (Basel, Switzerland) (21.07.2025)
    “… The global prevalence of depression necessitates the application of technological solutions, particularly sensor-based systems, to augment scarce resources for …”
    Volltext
    Journal Article