Suchergebnisse - "Multi-robot Reinforcement Learning"

  1. 1

    MAMBPO: Sample-efficient multi-robot reinforcement learning using learned world models von Willemsen, Daniel, Coppola, Mario, de Croon, Guido C.H.E.

    ISSN: 2153-0866
    Veröffentlicht: IEEE 27.09.2021
    “… Multi-robot systems can benefit from reinforcement learning (RL) algorithms that learn behaviours in a small number of trials, a property known as sample …”
    Volltext
    Tagungsbericht
  2. 2

    Centralizing State-Values in Dueling Networks for Multi-Robot Reinforcement Learning Mapless Navigation von Marchesini, Enrico, Farinelli, Alessandro

    ISSN: 2153-0866
    Veröffentlicht: IEEE 27.09.2021
    “… We study the problem of multi-robot mapless navigation in the popular Centralized Training and Decentralized Execution (CTDE) paradigm. This problem is …”
    Volltext
    Tagungsbericht
  3. 3

    From Agents to Robots: A Training and Evaluation Platform for Multi-robot Reinforcement Learning von Liang, Zhiuxan, Cao, Jiannong, Jiang, Shan, Saxena, Divya, Cao, Rui, Xu, Huafeng

    ISSN: 2690-5965
    Veröffentlicht: IEEE 10.10.2024
    “… Multi-robot reinforcement learning (MRRL) is a promising approach to solving cooperation problems and has been widely adopted in many applications …”
    Volltext
    Tagungsbericht
  4. 4

    PIMbot: Policy and Incentive Manipulation for Multi-Robot Reinforcement Learning in Social Dilemmas von Nikkhoo, Shahab, Li, Zexin, Samanta, Aritra, Li, Yufei, Liu, Cong

    ISSN: 2153-0866
    Veröffentlicht: IEEE 01.10.2023
    “… Recent research has demonstrated the potential of reinforcement learning (RL) in enabling effective multi-robot collaboration, particularly in social dilemmas …”
    Volltext
    Tagungsbericht
  5. 5

    MARBLER: An Open Platform for Standardized Evaluation of Multi-Robot Reinforcement Learning Algorithms von Torbati, Reza J., Lohiya, Shubham, Singh, Shivika, Nigam, Meher S., Ravichandar, Harish

    Veröffentlicht: IEEE 04.12.2023
    “… Multi-Agent Reinforcement Learning (MARL) has enjoyed significant recent progress thanks, in part, to the integration of deep learning techniques for modeling …”
    Volltext
    Tagungsbericht
  6. 6

    Investigating Symbiosis in Robotic Ecosystems: A Case Study for Multi-Robot Reinforcement Learning Reward Shaping von Niu, Xuezhi, Broo, Didem Gurdur

    ISSN: 2694-3506
    Veröffentlicht: IEEE 27.06.2025
    “… This paper presents a bio-inspired reward shaping approach for multi-agent reinforcement learning (MARL) in heterogeneous multi-robot systems, leveraging a …”
    Volltext
    Tagungsbericht
  7. 7

    Heterogeneous Multi-Robot Reinforcement Learning von Bettini, Matteo, Shankar, Ajay, Prorok, Amanda

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 17.01.2023
    Veröffentlicht in arXiv.org (17.01.2023)
    “… Cooperative multi-robot tasks can benefit from heterogeneity in the robots' physical and behavioral traits. In spite of this, traditional Multi-Agent …”
    Volltext
    Paper
  8. 8

    Effect of Virtual Work Braking on Distributed Multi-robot Reinforcement Learning von Kawano, Hiroshi

    ISSN: 1062-922X
    Veröffentlicht: IEEE 01.10.2013
    “… Multi-agent reinforcement learning (MARL) is one of the most promising methods for solving the problem of multi-robot control. One approach for MARL is …”
    Volltext
    Tagungsbericht
  9. 9

    Cooperative multi-robot reinforcement learning: A framework in hybrid state space von Xueqing Sun, Tao Mao, Kralik, J.D., Ray, L.E.

    ISBN: 9781424438037, 1424438039
    ISSN: 2153-0858
    Veröffentlicht: IEEE 01.10.2009
    “… This paper presents an approach to cooperative multi-robot reinforcement learning based on a hybrid state space representation of the environment to achieve both task learning and heterogeneous role …”
    Volltext
    Tagungsbericht
  10. 10
  11. 11

    MARBLER: An Open Platform for Standardized Evaluation of Multi-Robot Reinforcement Learning Algorithms von Torbati, Reza, Lohiya, Shubham, Singh, Shivika, Nigam, Meher Shashwat, Ravichandar, Harish

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 22.10.2023
    Veröffentlicht in arXiv.org (22.10.2023)
    “… Multi-Agent Reinforcement Learning (MARL) has enjoyed significant recent progress thanks, in part, to the integration of deep learning techniques for modeling …”
    Volltext
    Paper
  12. 12

    PIMbot: Policy and Incentive Manipulation for Multi-Robot Reinforcement Learning in Social Dilemmas von Nikkhoo, Shahab, Li, Zexin, Samanta, Aritra, Li, Yufei, Liu, Cong

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 29.07.2023
    Veröffentlicht in arXiv.org (29.07.2023)
    “… Recent research has demonstrated the potential of reinforcement learning (RL) in enabling effective multi-robot collaboration, particularly in social dilemmas …”
    Volltext
    Paper
  13. 13

    Centralizing State-Values in Dueling Networks for Multi-Robot Reinforcement Learning Mapless Navigation von Marchesini, Enrico, Farinelli, Alessandro

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 16.12.2021
    Veröffentlicht in arXiv.org (16.12.2021)
    “… We study the problem of multi-robot mapless navigation in the popular Centralized Training and Decentralized Execution (CTDE) paradigm. This problem is …”
    Volltext
    Paper
  14. 14

    From Multi-agent to Multi-robot: A Scalable Training and Evaluation Platform for Multi-robot Reinforcement Learning von Liang, Zhiuxan, Cao, Jiannong, Jiang, Shan, Saxena, Divya, Chen, Jinlin, Xu, Huafeng

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 20.06.2022
    Veröffentlicht in arXiv.org (20.06.2022)
    “… This paper introduces a scalable emulation platform for multi-robot reinforcement learning (MRRL …”
    Volltext
    Paper
  15. 15

    MAMBPO: Sample-efficient multi-robot reinforcement learning using learned world models von Willemsen, Daniël, Coppola, Mario, Guido C H E de Croon

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 05.03.2021
    Veröffentlicht in arXiv.org (05.03.2021)
    “… Multi-robot systems can benefit from reinforcement learning (RL) algorithms that learn behaviours in a small number of trials, a property known as sample …”
    Volltext
    Paper
  16. 16

    Hierarchical Deep Reinforcement Learning for Multi-robot Cooperation in Partially Observable Environment von Liang, Zhixuan, Cao, Jiannong, Lin, Wanyu, Chen, Jinlin, Xu, Huafeng

    Veröffentlicht: IEEE 01.12.2021
    “… Many real-world applications require multi-robot coordination in partially-observable domains such as package delivery, search, and rescue. One typical way to …”
    Volltext
    Tagungsbericht
  17. 17

    Simulation of multi-robot reinforcement learning for box-pushing problem von Kovac, K., Zivkovic, I., Basic, B.D.

    ISBN: 0780382714, 9780780382718
    Veröffentlicht: Piscataway NJ IEEE 2004
    “… The box-pushing problem represents a challenging domain for the study of object manipulation in a multi-robot environment. Our box-pushing problem is based on …”
    Volltext
    Tagungsbericht
  18. 18

    Cooperative Q-learning based on learning automata von Mao Yang, Yantao Tian, Xinyue Qi

    ISBN: 9781424447947, 1424447941
    ISSN: 2161-8151
    Veröffentlicht: IEEE 01.08.2009
    “… The theory of learning automata has already been applied in reinforcement learning which is characterized by single-agent and single-stage. This paper proposed …”
    Volltext
    Tagungsbericht
  19. 19

    Reinforcement learning method for target hunting control of multi‐robot systems with obstacles von Fan, Zhilin, Yang, Hongyong, Liu, Fei, Liu, Li, Han, Yilin

    ISSN: 0884-8173, 1098-111X
    Veröffentlicht: New York John Wiley & Sons, Inc 01.12.2022
    Veröffentlicht in International journal of intelligent systems (01.12.2022)
    “… ‐robot reinforcement learning algorithm guided by the potential energy models is presented to perform the hunting, where reinforcement learning principles are combined with the model control …”
    Volltext
    Journal Article
  20. 20

    DiNNO: Distributed Neural Network Optimization for Multi-Robot Collaborative Learning von Yu, Javier, Vincent, Joseph A., Schwager, Mac

    ISSN: 2377-3766, 2377-3766
    Veröffentlicht: Piscataway IEEE 01.04.2022
    Veröffentlicht in IEEE robotics and automation letters (01.04.2022)
    “… We present DiNNO, a distributed algorithm that enables a group of robots to collaboratively optimize a deep neural network model while communicating over a …”
    Volltext
    Journal Article