Suchergebnisse - "Multi-robot Reinforcement Learning"
-
1
MAMBPO: Sample-efficient multi-robot reinforcement learning using learned world models
ISSN: 2153-0866Veröffentlicht: IEEE 27.09.2021Veröffentlicht in Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems (27.09.2021)“… Multi-robot systems can benefit from reinforcement learning (RL) algorithms that learn behaviours in a small number of trials, a property known as sample …”
Volltext
Tagungsbericht -
2
Centralizing State-Values in Dueling Networks for Multi-Robot Reinforcement Learning Mapless Navigation
ISSN: 2153-0866Veröffentlicht: IEEE 27.09.2021Veröffentlicht in Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems (27.09.2021)“… We study the problem of multi-robot mapless navigation in the popular Centralized Training and Decentralized Execution (CTDE) paradigm. This problem is …”
Volltext
Tagungsbericht -
3
From Agents to Robots: A Training and Evaluation Platform for Multi-robot Reinforcement Learning
ISSN: 2690-5965Veröffentlicht: IEEE 10.10.2024Veröffentlicht in Proceedings - International Conference on Parallel and Distributed Systems (10.10.2024)“… Multi-robot reinforcement learning (MRRL) is a promising approach to solving cooperation problems and has been widely adopted in many applications …”
Volltext
Tagungsbericht -
4
PIMbot: Policy and Incentive Manipulation for Multi-Robot Reinforcement Learning in Social Dilemmas
ISSN: 2153-0866Veröffentlicht: IEEE 01.10.2023Veröffentlicht in Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems (01.10.2023)“… Recent research has demonstrated the potential of reinforcement learning (RL) in enabling effective multi-robot collaboration, particularly in social dilemmas …”
Volltext
Tagungsbericht -
5
MARBLER: An Open Platform for Standardized Evaluation of Multi-Robot Reinforcement Learning Algorithms
Veröffentlicht: IEEE 04.12.2023Veröffentlicht in 2023 International Symposium on Multi-Robot and Multi-Agent Systems (MRS) (04.12.2023)“… Multi-Agent Reinforcement Learning (MARL) has enjoyed significant recent progress thanks, in part, to the integration of deep learning techniques for modeling …”
Volltext
Tagungsbericht -
6
Investigating Symbiosis in Robotic Ecosystems: A Case Study for Multi-Robot Reinforcement Learning Reward Shaping
ISSN: 2694-3506Veröffentlicht: IEEE 27.06.2025Veröffentlicht in International Conference on Robotics and Automation Sciences (Online) (27.06.2025)“… This paper presents a bio-inspired reward shaping approach for multi-agent reinforcement learning (MARL) in heterogeneous multi-robot systems, leveraging a …”
Volltext
Tagungsbericht -
7
Heterogeneous Multi-Robot Reinforcement Learning
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 17.01.2023Veröffentlicht in arXiv.org (17.01.2023)“… Cooperative multi-robot tasks can benefit from heterogeneity in the robots' physical and behavioral traits. In spite of this, traditional Multi-Agent …”
Volltext
Paper -
8
Effect of Virtual Work Braking on Distributed Multi-robot Reinforcement Learning
ISSN: 1062-922XVeröffentlicht: IEEE 01.10.2013Veröffentlicht in 2013 IEEE International Conference on Systems, Man, and Cybernetics (01.10.2013)“… Multi-agent reinforcement learning (MARL) is one of the most promising methods for solving the problem of multi-robot control. One approach for MARL is …”
Volltext
Tagungsbericht -
9
Cooperative multi-robot reinforcement learning: A framework in hybrid state space
ISBN: 9781424438037, 1424438039ISSN: 2153-0858Veröffentlicht: IEEE 01.10.2009Veröffentlicht in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (01.10.2009)“… This paper presents an approach to cooperative multi-robot reinforcement learning based on a hybrid state space representation of the environment to achieve both task learning and heterogeneous role …”
Volltext
Tagungsbericht -
10
Improving Fast Adaptation for Newcomers in Multi-Robot Reinforcement Learning System
Veröffentlicht: IEEE 01.08.2019Veröffentlicht in 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (01.08.2019)“… Multi-robot system has been adopted as a kind of ubiquitous intelligent systems to perform critical tasks in various fields. In multi-robot systems, …”
Volltext
Tagungsbericht -
11
MARBLER: An Open Platform for Standardized Evaluation of Multi-Robot Reinforcement Learning Algorithms
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 22.10.2023Veröffentlicht in arXiv.org (22.10.2023)“… Multi-Agent Reinforcement Learning (MARL) has enjoyed significant recent progress thanks, in part, to the integration of deep learning techniques for modeling …”
Volltext
Paper -
12
PIMbot: Policy and Incentive Manipulation for Multi-Robot Reinforcement Learning in Social Dilemmas
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 29.07.2023Veröffentlicht in arXiv.org (29.07.2023)“… Recent research has demonstrated the potential of reinforcement learning (RL) in enabling effective multi-robot collaboration, particularly in social dilemmas …”
Volltext
Paper -
13
Centralizing State-Values in Dueling Networks for Multi-Robot Reinforcement Learning Mapless Navigation
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 16.12.2021Veröffentlicht in arXiv.org (16.12.2021)“… We study the problem of multi-robot mapless navigation in the popular Centralized Training and Decentralized Execution (CTDE) paradigm. This problem is …”
Volltext
Paper -
14
From Multi-agent to Multi-robot: A Scalable Training and Evaluation Platform for Multi-robot Reinforcement Learning
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 20.06.2022Veröffentlicht in arXiv.org (20.06.2022)“… This paper introduces a scalable emulation platform for multi-robot reinforcement learning (MRRL …”
Volltext
Paper -
15
MAMBPO: Sample-efficient multi-robot reinforcement learning using learned world models
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 05.03.2021Veröffentlicht in arXiv.org (05.03.2021)“… Multi-robot systems can benefit from reinforcement learning (RL) algorithms that learn behaviours in a small number of trials, a property known as sample …”
Volltext
Paper -
16
Hierarchical Deep Reinforcement Learning for Multi-robot Cooperation in Partially Observable Environment
Veröffentlicht: IEEE 01.12.2021Veröffentlicht in 2021 IEEE Third International Conference on Cognitive Machine Intelligence (CogMI) (01.12.2021)“… Many real-world applications require multi-robot coordination in partially-observable domains such as package delivery, search, and rescue. One typical way to …”
Volltext
Tagungsbericht -
17
Simulation of multi-robot reinforcement learning for box-pushing problem
ISBN: 0780382714, 9780780382718Veröffentlicht: Piscataway NJ IEEE 2004Veröffentlicht in MELECON 2004 : proceedings of the 12th IEEE Mediterranean Electrotechnical Conference : May 12-15, 2004, Dubrovnik, Croatia (2004)“… The box-pushing problem represents a challenging domain for the study of object manipulation in a multi-robot environment. Our box-pushing problem is based on …”
Volltext
Tagungsbericht -
18
Cooperative Q-learning based on learning automata
ISBN: 9781424447947, 1424447941ISSN: 2161-8151Veröffentlicht: IEEE 01.08.2009Veröffentlicht in 2009 IEEE International Conference on Automation and Logistics (01.08.2009)“… The theory of learning automata has already been applied in reinforcement learning which is characterized by single-agent and single-stage. This paper proposed …”
Volltext
Tagungsbericht -
19
Reinforcement learning method for target hunting control of multi‐robot systems with obstacles
ISSN: 0884-8173, 1098-111XVeröffentlicht: New York John Wiley & Sons, Inc 01.12.2022Veröffentlicht in International journal of intelligent systems (01.12.2022)“… ‐robot reinforcement learning algorithm guided by the potential energy models is presented to perform the hunting, where reinforcement learning principles are combined with the model control …”
Volltext
Journal Article -
20
DiNNO: Distributed Neural Network Optimization for Multi-Robot Collaborative Learning
ISSN: 2377-3766, 2377-3766Veröffentlicht: Piscataway IEEE 01.04.2022Veröffentlicht in IEEE robotics and automation letters (01.04.2022)“… We present DiNNO, a distributed algorithm that enables a group of robots to collaboratively optimize a deep neural network model while communicating over a …”
Volltext
Journal Article

