Suchergebnisse - "Multi-expression programming"

  1. 1

    Sustainable utilization of foundry waste: Forecasting mechanical properties of foundry sand based concrete using multi-expression programming von Iqbal, Muhammad Farjad, Javed, Muhammad Faisal, Rauf, Momina, Azim, Iftikhar, Ashraf, Muhammad, Yang, Jian, Liu, Qing-feng

    ISSN: 0048-9697, 1879-1026, 1879-1026
    Veröffentlicht: Elsevier B.V 01.08.2021
    Veröffentlicht in The Science of the total environment (01.08.2021)
    “… Waste Foundry sand (WFS), a major solid waste from metal casting industry, is posing a significant environmental threat owing to its disposal to landfills. In …”
    Volltext
    Journal Article
  2. 2

    Innovative modeling techniques including MEP, ANN and FQ to forecast the compressive strength of geopolymer concrete modified with nanoparticles von Ahmed, Hemn Unis, Mohammed, Ahmed S., Faraj, Rabar H., Abdalla, Aso A., Qaidi, Shaker M. A., Sor, Nadhim Hamah, Mohammed, Azad A.

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.06.2023
    Veröffentlicht in Neural computing & applications (01.06.2023)
    “… The use of nano-materials to improve the engineering properties of different types of concrete composites including geopolymer concrete (GPC) has recently …”
    Volltext
    Journal Article
  3. 3

    Sustainable use of fly-ash: Use of gene-expression programming (GEP) and multi-expression programming (MEP) for forecasting the compressive strength geopolymer concrete von Chu, Hong-Hu, Khan, Mohsin Ali, Javed, Muhammad, Zafar, Adeel, Ijaz Khan, M., Alabduljabbar, Hisham, Qayyum, Sumaira

    ISSN: 2090-4479
    Veröffentlicht: Elsevier B.V 01.12.2021
    Veröffentlicht in Ain Shams Engineering Journal (01.12.2021)
    “… Annually, the thermal coal industries produce billion tons of fly-ash (FA) as a waste by-product. Which has been proficiently used for the manufacture of FA …”
    Volltext
    Journal Article
  4. 4

    Development of predictive models for sustainable concrete via genetic programming-based algorithms von Chen, Lingling, Wang, Zhiyuan, Khan, Aftab Ahmad, Khan, Majid, Javed, Muhammad Faisal, Alaskar, Abdulaziz, Eldin, Sayed M.

    ISSN: 2238-7854
    Veröffentlicht: Elsevier B.V 01.05.2023
    Veröffentlicht in Journal of materials research and technology (01.05.2023)
    “… Waste foundry sand (WFS), a by-product of the casting industry, is a potential material that may be employed as a substitute for fine aggregate in concrete. In …”
    Volltext
    Journal Article
  5. 5

    Predictive modelling of compression strength of waste GP/FA blended expansive soils using multi-expression programming von Usama, Muhammad, Gardezi, Hasnain, Jalal, Fazal E., Ali Rehman, Muhammad, Javed, Nida, Janjua, Shahmir, Iqbal, Mudassir

    ISSN: 0950-0618, 1879-0526
    Veröffentlicht: Elsevier Ltd 15.08.2023
    Veröffentlicht in Construction & building materials (15.08.2023)
    “… [Display omitted] •High performance paradigm for predicting UCS of stabilized expansive soil.•Waste glass powder (WGP) and Fly Ash (FA) were used for …”
    Volltext
    Journal Article
  6. 6

    Predicting the compaction characteristics of expansive soils using two genetic programming-based algorithms von Jalal, Fazal E., Xu, Yongfu, Iqbal, Mudassir, Jamhiri, Babak, Javed, Muhammad Faisal

    ISSN: 2214-3912, 2214-3912
    Veröffentlicht: Elsevier Ltd 01.09.2021
    Veröffentlicht in Transportation Geotechnics (01.09.2021)
    “… •Development of new empirical GP-based prediction models to evaluate compaction parameters of expansive soils.•Performance comparison of gene expression …”
    Volltext
    Journal Article
  7. 7

    Artificial intelligence-based optimized models for predicting the slump and compressive strength of sustainable alkali-derived concrete von Zou, Baoping, Wang, Yanbing, Nasir Amin, Muhammad, Iftikhar, Bawar, Khan, Kaffayatullah, Ali, Mujahid, Althoey, Fadi

    ISSN: 0950-0618
    Veröffentlicht: Elsevier Ltd 15.12.2023
    Veröffentlicht in Construction & building materials (15.12.2023)
    “… •AI tools (GEP and MEP) were used for developing prediction models for AAC properties.•The sensitivity analysis of the database showed the relevance of input …”
    Volltext
    Journal Article
  8. 8

    Multi-expression programming based prediction of the seismic capacity of reinforced concrete rectangular columns von Asghar, Raheel, Javed, Muhammad Faisal, Saqib, Muhammad, Alaskar, Abdulaziz, Ali, Mujahid, Nawaz, R.

    ISSN: 0952-1976, 1873-6769
    Veröffentlicht: Elsevier Ltd 01.05.2024
    Veröffentlicht in Engineering applications of artificial intelligence (01.05.2024)
    “… This article presents an innovative artificial intelligence based multi-expression programming approach to predict the seismic capacity of reinforced concrete …”
    Volltext
    Journal Article
  9. 9

    Multi-expression programming for enhancing MHD heat transfer in a nanofluid-filled enclosure with heat generation and viscous dissipation von Ullah, Naeem, Bibi, Aneela, Lu, Dianchen

    ISSN: 0010-4655
    Veröffentlicht: Elsevier B.V 01.08.2025
    Veröffentlicht in Computer physics communications (01.08.2025)
    “… Efficient thermal management is a critical challenge in various engineering configuration where overheating affects performance, such as electronics, …”
    Volltext
    Journal Article
  10. 10

    Proposition of an equivalent reduced thickness for composite steel plate shear walls containing an opening von Meghdadian, Mohammad, Gharaei-Moghaddam, Nima, Arabshahi, Alireza, Mahdavi, Navid, Ghalehnovi, Mansour

    ISSN: 0143-974X, 1873-5983
    Veröffentlicht: Elsevier Ltd 01.05.2020
    Veröffentlicht in Journal of constructional steel research (01.05.2020)
    “… The composite steel plate shear wall (CSPSW) is a relatively new structural system which attracted many researchers in recent years. The main idea for …”
    Volltext
    Journal Article
  11. 11

    Effect of magnetized mixing water on the fresh and hardened state properties of steel fibre reinforced self-compacting concrete von Ghorbani, Saeid, Sharifi, Sohrab, Rokhsarpour, Hamed, Shoja, Sara, Gholizadeh, Mostafa, Rahmatabad, Mohammad Ali Dashti, de Brito, Jorge

    ISSN: 0950-0618, 1879-0526
    Veröffentlicht: Elsevier Ltd 10.07.2020
    Veröffentlicht in Construction & building materials (10.07.2020)
    “… •Using magnetized water leads to a higher slump flow and a lower viscosity of the SCC mixes;•Magnetized water significantly improved the mechanical properties …”
    Volltext
    Journal Article
  12. 12

    Evaluating the impact of data preprocessing to develop a robust MEP-based forecasting model for building integrated with PCM von Nazir, Kashif, Memon, Shazim Ali

    ISSN: 0360-5442
    Veröffentlicht: Elsevier Ltd 01.06.2025
    Veröffentlicht in Energy (Oxford) (01.06.2025)
    “… Data quality is a crucial aspect to accurately predict the energy use of buildings utilizing machine learning methods. Data preprocessing can ensure data …”
    Volltext
    Journal Article
  13. 13

    Indirect estimation of resilient modulus (Mr) of subgrade soil: Gene expression programming vs multi expression programming von Khawaja, Laiba, Javed, Muhammad Faisal, Asif, Usama, Alkhattabi, Loai, Ahmed, Bilal, Alabduljabbar, Hisham

    ISSN: 2352-0124, 2352-0124
    Veröffentlicht: Elsevier Ltd 01.08.2024
    Veröffentlicht in Structures (Oxford) (01.08.2024)
    “… Accurate prediction of resilient modulus (MR) in compacted subgrade soil is crucial for planning secure and environmentally friendly flexible pavement systems …”
    Volltext
    Journal Article
  14. 14

    A novel framework for developing a machine learning-based forecasting model using multi-stage sensitivity analysis to predict the energy consumption of PCM-integrated building von Nazir, Kashif, Memon, Shazim Ali, Saurbayeva, Assemgul

    ISSN: 0306-2619
    Veröffentlicht: Elsevier Ltd 15.12.2024
    Veröffentlicht in Applied energy (15.12.2024)
    “… Accurate machine learning (ML) predictions for the early stages of the building design are crucial to construct energy-efficient buildings utilizing limited …”
    Volltext
    Journal Article
  15. 15

    Unconfined compressive strength of bio-cemented sand: state-of-the-art review and MEP-MC-based model development von Wang, Han-Lin, Yin, Zhen-Yu

    ISSN: 0959-6526, 1879-1786
    Veröffentlicht: Elsevier Ltd 15.09.2021
    Veröffentlicht in Journal of cleaner production (15.09.2021)
    “… As a clean and sustainable method, the microbially induced calcite precipitation (MICP) approach has been widely used for reinforcing weak soils. This study …”
    Volltext
    Journal Article
  16. 16

    Investigating the feasibility of genetic algorithms in predicting the properties of eco-friendly alkali-based concrete von Jin, Conghe, Qian, Yongjiu, Ayub Khan, Suleman, Ahmad, Waqas, Althoey, Fadi, Saad Alotaibi, Badr, Awad Abuhussain, Mohammed

    ISSN: 0950-0618
    Veröffentlicht: Elsevier Ltd 15.12.2023
    Veröffentlicht in Construction & building materials (15.12.2023)
    “… •GEP and MEP models were optimized for predicting the rheological properties of AAC.•Static and dynamic yield stress and plastic viscosity were chosen as model …”
    Volltext
    Journal Article
  17. 17
  18. 18

    Consolidation assessment using Multi Expression Programming von Sharifi, Sohrab, Abrishami, Saeed, Gandomi, Amir H.

    ISSN: 1568-4946, 1872-9681
    Veröffentlicht: Elsevier B.V 01.01.2020
    Veröffentlicht in Applied soft computing (01.01.2020)
    “… In this study, new approximate solutions for consolidation have been developed in order to hasten the calculations. These solutions include two groups of …”
    Volltext
    Journal Article
  19. 19

    Performance evaluation of concrete made with plastic waste using multi-expression programming von Asif, Usama, Javed, Muhammad Faisal, Alyami, Mana, Hammad, Ahmed WA

    ISSN: 2352-4928, 2352-4928
    Veröffentlicht: Elsevier Ltd 01.06.2024
    Veröffentlicht in Materials today communications (01.06.2024)
    “… The immense production of plastic waste due to its non-biodegradable nature has become a major issue for the world. Several researchers have recently tried to …”
    Volltext
    Journal Article
  20. 20

    Compressive strength of waste-derived cementitious composites using machine learning von Tian, Qiong, Lu, Yijun, Zhou, Ji, Song, Shutong, Yang, Liming, Cheng, Tao, Huang, Jiandong

    ISSN: 1605-8127, 1605-8127
    Veröffentlicht: De Gruyter 15.05.2024
    Veröffentlicht in Reviews on advanced materials science (15.05.2024)
    “… Marble cement (MC) is a new binding material for concrete, and the strength assessment of the resulting materials is the subject of this investigation. MC was …”
    Volltext
    Journal Article