Suchergebnisse - "Mathematics of computing Mathematical software Mathematical software performance"

  1. 1

    Finding the Pareto Frontier of Low-Precision Data Formats and MAC Architecture for LLM Inference von Crafton, Brian, Peng, Xiaochen, Sun, Xiaoyu, Lele, Ashwin, Zhang, Bo, Khwa, Win-San, Akarvardar, Kerem

    Veröffentlicht: IEEE 22.06.2025
    “… To accelerate AI applications, numerous data formats and physical implementations of matrix multiplication have been proposed, creating a complex design space …”
    Volltext
    Tagungsbericht
  2. 2

    An Input-Aware Sparse Tensor Compiler Empowered by Vectorized Acceleration von He, Xianhao, Wang, Haotian, Zhang, Jiapeng, Yang, Wangdong, Chronopoulos, Anthony Theodore, Li, Kenli

    Veröffentlicht: IEEE 22.06.2025
    “… Sparsity is widely prevalent in real-world applications, yet existing compiler optimizations and code generation techniques for sparse computations remain …”
    Volltext
    Tagungsbericht
  3. 3

    FeKAN: Efficient Kolmogorov-Arnold Networks Accelerator Using FeFET-based CAM and LUT von Yu, Xuliang, Qian, Yu, Yin, Xunzhao, Zhuo, Cheng, Zhao, Liang

    Veröffentlicht: IEEE 22.06.2025
    “… Kolmogorov-Arnold networks (KANs) have emerged as a promising alternative to MLP due to their adaptive learning capabilities for complex dependencies through …”
    Volltext
    Tagungsbericht
  4. 4

    Optimized Polynomial Multiplier Architectures for Post-Quantum KEM Saber von Basso, Andrea, Roy, Sujoy Sinha

    Veröffentlicht: IEEE 05.12.2021
    “… Saber is one of the four finalists in the ongoing NIST post-quantum cryptography standardization project. A significant portion of Saber's computation time is …”
    Volltext
    Tagungsbericht
  5. 5

    InnerSP: A Memory Efficient Sparse Matrix Multiplication Accelerator with Locality-Aware Inner Product Processing von Baek, Daehyeon, Hwang, Soojin, Heo, Taekyung, Kim, Daehoon, Huh, Jaehyuk

    Veröffentlicht: IEEE 01.09.2021
    “… Sparse matrix multiplication is one of the key computational kernels in large-scale data analytics. However, a naive implementation suffers from the overheads …”
    Volltext
    Tagungsbericht
  6. 6

    Tackling the Matrix Multiplication Micro-Kernel Generation with Exo von Castello, Adrian, Bellavita, Julian, Dinh, Grace, Ikarashi, Yuka, Martinez, Hector

    ISSN: 2643-2838
    Veröffentlicht: IEEE 02.03.2024
    “… The optimization of the matrix multiplication (or GEMM) has been a need during the last decades. This operation is considered the flagship of current linear …”
    Volltext
    Tagungsbericht
  7. 7

    Pipirima: Predicting Patterns in Sparsity to Accelerate Matrix Algebra von Bakhtiar, Ubaid, Joo, Donghyeon, Asgari, Bahar

    Veröffentlicht: IEEE 22.06.2025
    “… While sparsity, a feature of data in many applications, provides optimization opportunities such as reducing unnecessary computations, data transfers, and …”
    Volltext
    Tagungsbericht
  8. 8

    ReSMiPS: A ReRAM-based Sparse Mixed-precision Solver with Fast Matrix Reordering Algorithm von Fu, Yuyang, Li, Jiancong, Chen, Jia, Zhou, Zhiwei, Zhou, Houji, Peng, Wenlong, Li, Yi, Miao, Xiangshui

    Veröffentlicht: IEEE 22.06.2025
    “… The solution of sparse matrix equations is essential in scientific computing. However, traditional solvers on digital computing platforms are limited by memory …”
    Volltext
    Tagungsbericht
  9. 9

    SSpMV: A Sparsity-aware SpMV Framework Empowered by Multimodal Machine Learning von Lin, Shengle, Liu, Chubo, Ding, Yan, Zhou, Joey Tianyi, Li, Kenli, Yang, Wangdong

    Veröffentlicht: IEEE 22.06.2025
    “… Sparse Matrix-Vector Multiplication (SpMV) is an essential sparse operation in scientific computing and artificial intelligence. Efficiently adapting SpMV …”
    Volltext
    Tagungsbericht
  10. 10

    A Tensor Algebra Compiler for Sparse Differentiation von Shaikhha, Amir, Huot, Mathieu, Hashemian, Shideh

    ISSN: 2643-2838
    Veröffentlicht: IEEE 02.03.2024
    “… Sparse tensors are prevalent in many data-intensive applications. However, existing automatic differentiation (AD) frameworks are tailored towards dense …”
    Volltext
    Tagungsbericht
  11. 11

    SFLU: Synchronization-Free Sparse LU Factorization for Fast Circuit Simulation on GPUs von Zhao, Jianqi, Wen, Yao, Luo, Yuchen, Jin, Zhou, Liu, Weifeng, Zhou, Zhenya

    Veröffentlicht: IEEE 05.12.2021
    “… Sparse LU factorization is one of the key building blocks of sparse direct solvers and often dominates the computing time of circuit simulation programs …”
    Volltext
    Tagungsbericht
  12. 12

    JITSPMM: Just-in-Time Instruction Generation for Accelerated Sparse Matrix-Matrix Multiplication von Fu, Qiang, Rolinger, Thomas B., Huang, H. Howie

    ISSN: 2643-2838
    Veröffentlicht: IEEE 02.03.2024
    “… Achieving high performance for Sparse Matrix-Matrix Multiplication (SpMM) has received increasing research attention, especially on multi-core CPUs, due to the …”
    Volltext
    Tagungsbericht
  13. 13

    pSyncPIM: Partially Synchronous Execution of Sparse Matrix Operations for All-Bank PIM Architectures von Baek, Daehyeon, Hwang, Soojin, Huh, Jaehyuk

    Veröffentlicht: IEEE 29.06.2024
    “… Recent commercial incarnations of processing-in-memory (PIM) maintain the standard DRAM interface and employ the all-bank mode execution to maximize bank-level …”
    Volltext
    Tagungsbericht
  14. 14

    Accelerating Fourier and Number Theoretic Transforms using Tensor Cores and Warp Shuffles von Durrani, Sultan, Chughtai, Muhammad Saad, Hidayetoglu, Mert, Tahir, Rashid, Dakkak, Abdul, Rauchwerger, Lawrence, Zaffar, Fareed, Hwu, Wen-mei

    Veröffentlicht: IEEE 01.09.2021
    “… The discrete Fourier transform (DFT) and its specialized case, the number theoretic transform (NTT), are two important mathematical tools having applications …”
    Volltext
    Tagungsbericht
  15. 15

    Seer: Predictive Runtime Kernel Selection for Irregular Problems von Swann, Ryan, Osama, Muhammad, Sangaiah, Karthik, Mahmud, Jalal

    ISSN: 2643-2838
    Veröffentlicht: IEEE 02.03.2024
    “… Modern GPUs are designed for regular problems and suffer from load imbalance when processing irregular data. Prior to our work, a domain expert selects the …”
    Volltext
    Tagungsbericht
  16. 16

    SpV8: Pursuing Optimal Vectorization and Regular Computation Pattern in SpMV von Li, Chenyang, Xia, Tian, Zhao, Wenzhe, Zheng, Nanning, Ren, Pengju

    Veröffentlicht: IEEE 05.12.2021
    “… Sparse Matrix-Vector Multiplication (SpMV) plays an important role in many scientific and industry applications, and remains a well-known challenge due to the …”
    Volltext
    Tagungsbericht
  17. 17

    SpMMPlu: A Compiler Plug-in with Sparse IR for Efficient Sparse Matrix Multiplication von Yang, Tao, Zhou, Yiyuan, Tang, Qidong, Xu, Feng, Ma, Hui, Zhao, Jieru, Jiang, Li

    Veröffentlicht: IEEE 09.07.2023
    “… Sparsity is becoming arguably the most critical dimension to explore for efficiency and scalability as deep learning models grow significantly larger …”
    Volltext
    Tagungsbericht
  18. 18

    Bridging the semantic gaps of GPU acceleration for scale-out CNN-based big data processing: Think big, see small von Mingcong Song, Yang Hu, Yunlong Xu, Chao Li, Huixiang Chen, Jingling Yuan, Tao Li

    Veröffentlicht: ACM 01.09.2016
    “… Convolutional Neural Networks (CNNs) have substantially advanced the state-of-the-art accuracies of object recognition, which is the core function of a myriad …”
    Volltext
    Tagungsbericht
  19. 19

    Generating Portable High-Performance Code via Multi-Dimensional Homomorphisms von Rasch, Ari, Schulze, Richard, Gorlatch, Sergei

    ISSN: 2641-7936
    Veröffentlicht: IEEE 01.09.2019
    “… We address a key challenge in programming high-performance applications - achieving portable performance, i.e., the same source code achieves a consistent, …”
    Volltext
    Tagungsbericht
  20. 20

    Sparso: Context-driven optimizations of sparse linear algebra von Hongbo Rong, Jongsoo Park, Lingxiang Xiang, Anderson, Todd A., Smelyanskiy, Mikhail

    Veröffentlicht: ACM 01.09.2016
    “… The sparse matrix is a key data structure in various domains such as high-performance computing, machine learning, and graph analytics. To maximize performance …”
    Volltext
    Tagungsbericht