Suchergebnisse - "Mathematics of computing Mathematical software Mathematical software performance"
-
1
Finding the Pareto Frontier of Low-Precision Data Formats and MAC Architecture for LLM Inference
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… To accelerate AI applications, numerous data formats and physical implementations of matrix multiplication have been proposed, creating a complex design space …”
Volltext
Tagungsbericht -
2
An Input-Aware Sparse Tensor Compiler Empowered by Vectorized Acceleration
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… Sparsity is widely prevalent in real-world applications, yet existing compiler optimizations and code generation techniques for sparse computations remain …”
Volltext
Tagungsbericht -
3
FeKAN: Efficient Kolmogorov-Arnold Networks Accelerator Using FeFET-based CAM and LUT
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… Kolmogorov-Arnold networks (KANs) have emerged as a promising alternative to MLP due to their adaptive learning capabilities for complex dependencies through …”
Volltext
Tagungsbericht -
4
Optimized Polynomial Multiplier Architectures for Post-Quantum KEM Saber
Veröffentlicht: IEEE 05.12.2021Veröffentlicht in 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“… Saber is one of the four finalists in the ongoing NIST post-quantum cryptography standardization project. A significant portion of Saber's computation time is …”
Volltext
Tagungsbericht -
5
InnerSP: A Memory Efficient Sparse Matrix Multiplication Accelerator with Locality-Aware Inner Product Processing
Veröffentlicht: IEEE 01.09.2021Veröffentlicht in 2021 30th International Conference on Parallel Architectures and Compilation Techniques (PACT) (01.09.2021)“… Sparse matrix multiplication is one of the key computational kernels in large-scale data analytics. However, a naive implementation suffers from the overheads …”
Volltext
Tagungsbericht -
6
Tackling the Matrix Multiplication Micro-Kernel Generation with Exo
ISSN: 2643-2838Veröffentlicht: IEEE 02.03.2024Veröffentlicht in Proceedings / International Symposium on Code Generation and Optimization (02.03.2024)“… The optimization of the matrix multiplication (or GEMM) has been a need during the last decades. This operation is considered the flagship of current linear …”
Volltext
Tagungsbericht -
7
Pipirima: Predicting Patterns in Sparsity to Accelerate Matrix Algebra
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… While sparsity, a feature of data in many applications, provides optimization opportunities such as reducing unnecessary computations, data transfers, and …”
Volltext
Tagungsbericht -
8
ReSMiPS: A ReRAM-based Sparse Mixed-precision Solver with Fast Matrix Reordering Algorithm
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… The solution of sparse matrix equations is essential in scientific computing. However, traditional solvers on digital computing platforms are limited by memory …”
Volltext
Tagungsbericht -
9
SSpMV: A Sparsity-aware SpMV Framework Empowered by Multimodal Machine Learning
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… Sparse Matrix-Vector Multiplication (SpMV) is an essential sparse operation in scientific computing and artificial intelligence. Efficiently adapting SpMV …”
Volltext
Tagungsbericht -
10
A Tensor Algebra Compiler for Sparse Differentiation
ISSN: 2643-2838Veröffentlicht: IEEE 02.03.2024Veröffentlicht in Proceedings / International Symposium on Code Generation and Optimization (02.03.2024)“… Sparse tensors are prevalent in many data-intensive applications. However, existing automatic differentiation (AD) frameworks are tailored towards dense …”
Volltext
Tagungsbericht -
11
SFLU: Synchronization-Free Sparse LU Factorization for Fast Circuit Simulation on GPUs
Veröffentlicht: IEEE 05.12.2021Veröffentlicht in 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“… Sparse LU factorization is one of the key building blocks of sparse direct solvers and often dominates the computing time of circuit simulation programs …”
Volltext
Tagungsbericht -
12
JITSPMM: Just-in-Time Instruction Generation for Accelerated Sparse Matrix-Matrix Multiplication
ISSN: 2643-2838Veröffentlicht: IEEE 02.03.2024Veröffentlicht in Proceedings / International Symposium on Code Generation and Optimization (02.03.2024)“… Achieving high performance for Sparse Matrix-Matrix Multiplication (SpMM) has received increasing research attention, especially on multi-core CPUs, due to the …”
Volltext
Tagungsbericht -
13
pSyncPIM: Partially Synchronous Execution of Sparse Matrix Operations for All-Bank PIM Architectures
Veröffentlicht: IEEE 29.06.2024Veröffentlicht in 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA) (29.06.2024)“… Recent commercial incarnations of processing-in-memory (PIM) maintain the standard DRAM interface and employ the all-bank mode execution to maximize bank-level …”
Volltext
Tagungsbericht -
14
Accelerating Fourier and Number Theoretic Transforms using Tensor Cores and Warp Shuffles
Veröffentlicht: IEEE 01.09.2021Veröffentlicht in 2021 30th International Conference on Parallel Architectures and Compilation Techniques (PACT) (01.09.2021)“… The discrete Fourier transform (DFT) and its specialized case, the number theoretic transform (NTT), are two important mathematical tools having applications …”
Volltext
Tagungsbericht -
15
Seer: Predictive Runtime Kernel Selection for Irregular Problems
ISSN: 2643-2838Veröffentlicht: IEEE 02.03.2024Veröffentlicht in Proceedings / International Symposium on Code Generation and Optimization (02.03.2024)“… Modern GPUs are designed for regular problems and suffer from load imbalance when processing irregular data. Prior to our work, a domain expert selects the …”
Volltext
Tagungsbericht -
16
SpV8: Pursuing Optimal Vectorization and Regular Computation Pattern in SpMV
Veröffentlicht: IEEE 05.12.2021Veröffentlicht in 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“… Sparse Matrix-Vector Multiplication (SpMV) plays an important role in many scientific and industry applications, and remains a well-known challenge due to the …”
Volltext
Tagungsbericht -
17
SpMMPlu: A Compiler Plug-in with Sparse IR for Efficient Sparse Matrix Multiplication
Veröffentlicht: IEEE 09.07.2023Veröffentlicht in 2023 60th ACM/IEEE Design Automation Conference (DAC) (09.07.2023)“… Sparsity is becoming arguably the most critical dimension to explore for efficiency and scalability as deep learning models grow significantly larger …”
Volltext
Tagungsbericht -
18
Bridging the semantic gaps of GPU acceleration for scale-out CNN-based big data processing: Think big, see small
Veröffentlicht: ACM 01.09.2016Veröffentlicht in 2016 International Conference on Parallel Architecture and Compilation Techniques (PACT) (01.09.2016)“… Convolutional Neural Networks (CNNs) have substantially advanced the state-of-the-art accuracies of object recognition, which is the core function of a myriad …”
Volltext
Tagungsbericht -
19
Generating Portable High-Performance Code via Multi-Dimensional Homomorphisms
ISSN: 2641-7936Veröffentlicht: IEEE 01.09.2019Veröffentlicht in Proceedings / International Conference on Parallel Architectures and Compilation Techniques (01.09.2019)“… We address a key challenge in programming high-performance applications - achieving portable performance, i.e., the same source code achieves a consistent, …”
Volltext
Tagungsbericht -
20
Sparso: Context-driven optimizations of sparse linear algebra
Veröffentlicht: ACM 01.09.2016Veröffentlicht in 2016 International Conference on Parallel Architecture and Compilation Techniques (PACT) (01.09.2016)“… The sparse matrix is a key data structure in various domains such as high-performance computing, machine learning, and graph analytics. To maximize performance …”
Volltext
Tagungsbericht