Výsledky vyhledávání - "Machine Learning for Robot Control"
-
1
Data-driven predictive control of nonholonomic robots based on a bilinear Koopman realization: Data does not replace geometry
ISSN: 0921-8890Vydáno: Elsevier B.V 01.12.2025Vydáno v Robotics and autonomous systems (01.12.2025)“…Advances in machine learning and the growing trend towards effortless data generation in real-world systems have led to an increasing interest for…”
Získat plný text
Journal Article -
2
Linear Policies are Sufficient to Realize Robust Bipedal Walking on Challenging Terrains
ISSN: 2377-3766, 2377-3766Vydáno: Piscataway IEEE 01.04.2022Vydáno v IEEE robotics and automation letters (01.04.2022)“…In this work, we demonstrate robust walking in the bipedal robot Digit on uneven terrains by just learning a single linear policy. In particular, we propose a…”
Získat plný text
Journal Article -
3
Fast Payload Calibration for Sensorless Contact Estimation Using Model Pre-Training
ISSN: 2377-3766, 2377-3766Vydáno: IEEE 01.10.2024Vydáno v IEEE robotics and automation letters (01.10.2024)“… However, these approaches show limitations in scenarios where robot dynamics, particularly the end-effector payload, are subject to changes…”
Získat plný text
Journal Article -
4
Real-Time Constrained Tracking Control of Redundant Manipulators Using a Koopman-Zeroing Neural Network Framework
ISSN: 2377-3766, 2377-3766Vydáno: Piscataway IEEE 01.02.2024Vydáno v IEEE robotics and automation letters (01.02.2024)“…This study proposes a combined Koopman-ZNN (Zeroing Neural Network) architecture for real-time control of redundant manipulators subject to input constraints…”
Získat plný text
Journal Article -
5
Learning Optimal Impedance Control During Complex 3D Arm Movements
ISSN: 2377-3766, 2377-3766Vydáno: Piscataway IEEE 01.04.2021Vydáno v IEEE robotics and automation letters (01.04.2021)“… In order to model human's stiffness adaptive skill, we give human subjects the task to reach for a target by moving a handle assembled on the end-effector of a compliant robotic arm…”
Získat plný text
Journal Article -
6
Bridging the Model-Reality Gap With Lipschitz Network Adaptation
ISSN: 2377-3766, 2377-3766Vydáno: Piscataway IEEE 01.01.2022Vydáno v IEEE robotics and automation letters (01.01.2022)“…As robots venture into the real world, they are subject to unmodeled dynamics and disturbances…”
Získat plný text
Journal Article -
7
Learning Non-Parametric Models in Real Time via Online Generalized Product of Experts
ISSN: 2377-3766, 2377-3766Vydáno: Piscataway IEEE 01.10.2022Vydáno v IEEE robotics and automation letters (01.10.2022)“…In this work, we address the problem of online learning, where models must be continually updated from an incoming stream of data, while retaining past…”
Získat plný text
Journal Article