Výsledky vyhledávání - "Machine Learning for Robot Control"

  • Zobrazuji výsledky 1 - 7 z 7
Upřesnit hledání
  1. 1

    Data-driven predictive control of nonholonomic robots based on a bilinear Koopman realization: Data does not replace geometry Autor Rosenfelder, Mario, Bold, Lea, Eschmann, Hannes, Eberhard, Peter, Worthmann, Karl, Ebel, Henrik

    ISSN: 0921-8890
    Vydáno: Elsevier B.V 01.12.2025
    Vydáno v Robotics and autonomous systems (01.12.2025)
    “…Advances in machine learning and the growing trend towards effortless data generation in real-world systems have led to an increasing interest for…”
    Získat plný text
    Journal Article
  2. 2

    Linear Policies are Sufficient to Realize Robust Bipedal Walking on Challenging Terrains Autor Krishna, Lokesh, Castillo, Guillermo A., Mishra, Utkarsh A., Hereid, Ayonga, Kolathaya, Shishir

    ISSN: 2377-3766, 2377-3766
    Vydáno: Piscataway IEEE 01.04.2022
    Vydáno v IEEE robotics and automation letters (01.04.2022)
    “…In this work, we demonstrate robust walking in the bipedal robot Digit on uneven terrains by just learning a single linear policy. In particular, we propose a…”
    Získat plný text
    Journal Article
  3. 3

    Fast Payload Calibration for Sensorless Contact Estimation Using Model Pre-Training Autor Shan, Shilin, Pham, Quang-Cuong

    ISSN: 2377-3766, 2377-3766
    Vydáno: IEEE 01.10.2024
    Vydáno v IEEE robotics and automation letters (01.10.2024)
    “… However, these approaches show limitations in scenarios where robot dynamics, particularly the end-effector payload, are subject to changes…”
    Získat plný text
    Journal Article
  4. 4

    Real-Time Constrained Tracking Control of Redundant Manipulators Using a Koopman-Zeroing Neural Network Framework Autor Sah, Chandan Kumar, Singh, Rajpal, Keshavan, Jishnu

    ISSN: 2377-3766, 2377-3766
    Vydáno: Piscataway IEEE 01.02.2024
    Vydáno v IEEE robotics and automation letters (01.02.2024)
    “…This study proposes a combined Koopman-ZNN (Zeroing Neural Network) architecture for real-time control of redundant manipulators subject to input constraints…”
    Získat plný text
    Journal Article
  5. 5

    Learning Optimal Impedance Control During Complex 3D Arm Movements Autor Naceri, Abdeldjallil, Schumacher, Tobias, Li, Qiang, Calinon, Sylvain, Ritter, Helge

    ISSN: 2377-3766, 2377-3766
    Vydáno: Piscataway IEEE 01.04.2021
    Vydáno v IEEE robotics and automation letters (01.04.2021)
    “… In order to model human's stiffness adaptive skill, we give human subjects the task to reach for a target by moving a handle assembled on the end-effector of a compliant robotic arm…”
    Získat plný text
    Journal Article
  6. 6

    Bridging the Model-Reality Gap With Lipschitz Network Adaptation Autor Zhou, Siqi, Pereida, Karime, Zhao, Wenda, Schoellig, Angela P.

    ISSN: 2377-3766, 2377-3766
    Vydáno: Piscataway IEEE 01.01.2022
    Vydáno v IEEE robotics and automation letters (01.01.2022)
    “…As robots venture into the real world, they are subject to unmodeled dynamics and disturbances…”
    Získat plný text
    Journal Article
  7. 7

    Learning Non-Parametric Models in Real Time via Online Generalized Product of Experts Autor Watson, Connor, Morimoto, Tania K.

    ISSN: 2377-3766, 2377-3766
    Vydáno: Piscataway IEEE 01.10.2022
    Vydáno v IEEE robotics and automation letters (01.10.2022)
    “…In this work, we address the problem of online learning, where models must be continually updated from an incoming stream of data, while retaining past…”
    Získat plný text
    Journal Article