Výsledky vyhľadávania - "Journal of computational physics"

Upresniť hľadanie
  1. 1

    When and why PINNs fail to train: A neural tangent kernel perspective Autor Wang, Sifan, Yu, Xinling, Perdikaris, Paris

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: Cambridge Elsevier Inc 15.01.2022
    Vydané v Journal of computational physics (15.01.2022)
    “…•We analyze the training dynamics of PINNs using neural tangent kernel theory.•We derive the NTK of PINNs and study its limiting behavior.•Our analysis reveals…”
    Získať plný text
    Journal Article
  2. 2

    NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations Autor Jin, Xiaowei, Cai, Shengze, Li, Hui, Karniadakis, George Em

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: Cambridge Elsevier Inc 01.02.2021
    Vydané v Journal of computational physics (01.02.2021)
    “…•NSFnets involve the VP and VV formulations of the Navier-Stokes equations.•NSFnets can directly simulate and sustain turbulence at Reτ∼1,000.•A study on the…”
    Získať plný text
    Journal Article
  3. 3

    B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data Autor Yang, Liu, Meng, Xuhui, Karniadakis, George Em

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: Cambridge Elsevier Inc 15.01.2021
    Vydané v Journal of computational physics (15.01.2021)
    “…We propose a Bayesian physics-informed neural network (B-PINN) to solve both forward and inverse nonlinear problems described by partial differential equations…”
    Získať plný text
    Journal Article
  4. 4

    Uncertainty quantification in scientific machine learning: Methods, metrics, and comparisons Autor Psaros, Apostolos F., Meng, Xuhui, Zou, Zongren, Guo, Ling, Karniadakis, George Em

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: United States Elsevier Inc 15.03.2023
    Vydané v Journal of computational physics (15.03.2023)
    “…Neural networks (NNs) are currently changing the computational paradigm on how to combine data with mathematical laws in physics and engineering in a profound…”
    Získať plný text
    Journal Article
  5. 5

    Self-adaptive physics-informed neural networks Autor McClenny, Levi D., Braga-Neto, Ulisses M.

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: Elsevier Inc 01.02.2023
    Vydané v Journal of computational physics (01.02.2023)
    “…Physics-Informed Neural Networks (PINNs) have emerged recently as a promising application of deep neural networks to the numerical solution of nonlinear…”
    Získať plný text
    Journal Article
  6. 6

    Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations Autor Raissi, M., Perdikaris, P., Karniadakis, G.E.

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: Cambridge Elsevier Inc 01.02.2019
    Vydané v Journal of computational physics (01.02.2019)
    “…We introduce physics-informed neural networks – neural networks that are trained to solve supervised learning tasks while respecting any given laws of physics…”
    Získať plný text
    Journal Article
  7. 7

    PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain Autor Gao, Han, Sun, Luning, Wang, Jian-Xun

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: Cambridge Elsevier Inc 01.03.2021
    Vydané v Journal of computational physics (01.03.2021)
    “…•Enable CNN-based physics-informed deep learning for PDEs on irregular domain.•The proposed network can be trained without any labeled data.•Boundary…”
    Získať plný text
    Journal Article
  8. 8

    Adaptive activation functions accelerate convergence in deep and physics-informed neural networks Autor Jagtap, Ameya D., Kawaguchi, Kenji, Karniadakis, George Em

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: Cambridge Elsevier Inc 01.03.2020
    Vydané v Journal of computational physics (01.03.2020)
    “…•We employed adaptive activation functions in deep and physics-informed neural networks.•The proposed method is very simple and it is shown to accelerate…”
    Získať plný text
    Journal Article
  9. 9

    Physics-informed neural networks for inverse problems in supersonic flows Autor Jagtap, Ameya D., Mao, Zhiping, Adams, Nikolaus, Karniadakis, George Em

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: Cambridge Elsevier Science Ltd 01.10.2022
    Vydané v Journal of computational physics (01.10.2022)
    “…Accurate solutions to inverse supersonic compressible flow problems are often required for designing specialized aerospace vehicles. In particular, we consider…”
    Získať plný text
    Journal Article
  10. 10

    DGM: A deep learning algorithm for solving partial differential equations Autor Sirignano, Justin, Spiliopoulos, Konstantinos

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: Cambridge Elsevier Inc 15.12.2018
    Vydané v Journal of computational physics (15.12.2018)
    “…High-dimensional PDEs have been a longstanding computational challenge. We propose to solve high-dimensional PDEs by approximating the solution with a deep…”
    Získať plný text
    Journal Article
  11. 11

    Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders Autor Lee, Kookjin, Carlberg, Kevin T.

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: Cambridge Elsevier Inc 01.03.2020
    Vydané v Journal of computational physics (01.03.2020)
    “…•Two model-reduction methods that project dynamical systems on nonlinear manifolds.•Analysis including conditions under which the two methods are equivalent.•A…”
    Získať plný text
    Journal Article
  12. 12

    Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data Autor Zhu, Yinhao, Zabaras, Nicholas, Koutsourelakis, Phaedon-Stelios, Perdikaris, Paris

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: Cambridge Elsevier Inc 01.10.2019
    Vydané v Journal of computational physics (01.10.2019)
    “…Surrogate modeling and uncertainty quantification tasks for PDE systems are most often considered as supervised learning problems where input and output data…”
    Získať plný text
    Journal Article
  13. 13

    Parallel physics-informed neural networks via domain decomposition Autor Shukla, Khemraj, Jagtap, Ameya D., Karniadakis, George Em

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: Cambridge Elsevier Inc 15.12.2021
    Vydané v Journal of computational physics (15.12.2021)
    “…•Construction and implementation of new domain-decomposition based parallel algorithm is proposed for cPINNs and XPINNs methods.•The proposed algorithm adds…”
    Získať plný text
    Journal Article
  14. 14

    Weak adversarial networks for high-dimensional partial differential equations Autor Zang, Yaohua, Bao, Gang, Ye, Xiaojing, Zhou, Haomin

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: Cambridge Elsevier Inc 15.06.2020
    Vydané v Journal of computational physics (15.06.2020)
    “…•Parametrize weak solution and test function as deep neural networks for high-dim PDEs.•Applicable to general nonlinear initial value boundary problems in…”
    Získať plný text
    Journal Article
  15. 15

    PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network Autor Long, Zichao, Lu, Yiping, Dong, Bin

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: Cambridge Elsevier Inc 15.12.2019
    Vydané v Journal of computational physics (15.12.2019)
    “…Partial differential equations (PDEs) are commonly derived based on empirical observations. However, recent advances of technology enable us to collect and…”
    Získať plný text
    Journal Article
  16. 16

    A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems Autor Meng, Xuhui, Karniadakis, George Em

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: Cambridge Elsevier Inc 15.01.2020
    Vydané v Journal of computational physics (15.01.2020)
    “…•The present method can learn both linear and nonlinear correlations between the low- and high-fidelity data adaptively.•The present method can infer the…”
    Získať plný text
    Journal Article
  17. 17

    A physics-informed diffusion model for high-fidelity flow field reconstruction Autor Shu, Dule, Li, Zijie, Barati Farimani, Amir

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: Elsevier Inc 01.04.2023
    Vydané v Journal of computational physics (01.04.2023)
    “…Machine learning models are gaining increasing popularity in the domain of fluid dynamics for their potential to accelerate the production of high-fidelity…”
    Získať plný text
    Journal Article
  18. 18

    Hidden physics models: Machine learning of nonlinear partial differential equations Autor Raissi, Maziar, Karniadakis, George Em

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: Cambridge Elsevier Inc 15.03.2018
    Vydané v Journal of computational physics (15.03.2018)
    “…While there is currently a lot of enthusiasm about “big data”, useful data is usually “small” and expensive to acquire. In this paper, we present a new…”
    Získať plný text
    Journal Article
  19. 19

    Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems Autor Zhang, Dongkun, Lu, Lu, Guo, Ling, Karniadakis, George Em

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: Cambridge Elsevier Inc 15.11.2019
    Vydané v Journal of computational physics (15.11.2019)
    “…Physics-informed neural networks (PINNs) have recently emerged as an alternative way of numerically solving partial differential equations (PDEs) without the…”
    Získať plný text
    Journal Article
  20. 20

    What is the fractional Laplacian? A comparative review with new results Autor Lischke, Anna, Pang, Guofei, Gulian, Mamikon, Song, Fangying, Glusa, Christian, Zheng, Xiaoning, Mao, Zhiping, Cai, Wei, Meerschaert, Mark M., Ainsworth, Mark, Karniadakis, George Em

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: Cambridge Elsevier Inc 01.03.2020
    Vydané v Journal of computational physics (01.03.2020)
    “…The fractional Laplacian in Rd, which we write as (−Δ)α/2 with α∈(0,2), has multiple equivalent characterizations. Moreover, in bounded domains, boundary…”
    Získať plný text
    Journal Article