Výsledky vyhľadávania - "IEEE/CVF Conference on Computer Vision AND Pattern Recognition"
-
1
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2018) : Salt Lake City, Utah, USA 18-22 June 2018
ISBN: 9781538664216, 1538664216Vydavateľské údaje: Piscataway, NJ IEEE 2018Získať plný text
Kniha -
2
Collecting Cross-Modal Presence-Absence Evidence for Weakly-Supervised Audio- Visual Event Perception
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2023Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2023)“…With only video-level event labels, this paper targets at the task of weakly-supervised audio-visual event perception (WS-AVEP), which aims to temporally…”
Získať plný text
Konferenčný príspevok.. -
3
Record-Breaking Registrants and Technical Papers for 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Vydavateľské údaje: New York PR Newswire Association LLC 01.07.2022Vydané v PR Newswire (01.07.2022)Získať plný text
Newsletter -
4
CVPR 2019: Call for Papers Deadline November 16: The 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition
Vydavateľské údaje: New York PR Newswire Association LLC 10.10.2018Vydané v PR Newswire (10.10.2018)Získať plný text
Newsletter -
5
Subspace-PnP: A Geometric Constraint Loss for Mutual Assistance of Depth and Optical Flow Estimation
ISSN: 0920-5691, 1573-1405Vydavateľské údaje: New York Springer US 01.12.2022Vydané v International journal of computer vision (01.12.2022)“…, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 4654–4665, 2020; Ranjan et al., in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 12240…”
Získať plný text
Journal Article -
6
VizWiz Grand Challenge: Answering Visual Questions from Blind People
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2018Vydané v 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (01.06.2018)“…The study of algorithms to automatically answer visual questions currently is motivated by visual question answering (VQA) datasets constructed in artificial…”
Získať plný text
Konferenčný príspevok.. -
7
InLoc: Indoor Visual Localization with Dense Matching and View Synthesis
ISBN: 9781538664209, 1538664208ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2018Vydané v 2018 IEEE CVF Conference on Computer Vision and Pattern Recognition (01.06.2018)“…We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are…”
Získať plný text
Konferenčný príspevok.. -
8
MTPose: Human Pose Estimation with High-Resolution Multi-scale Transformers
ISSN: 1370-4621, 1573-773XVydavateľské údaje: New York Springer US 01.10.2022Vydané v Neural processing letters (01.10.2022)“…HRNet (High-Resolution Networks) as reported by Sun et al. (in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), 2019…”
Získať plný text
Journal Article -
9
Geometry-Consistent Generative Adversarial Networks for One-Sided Unsupervised Domain Mapping
ISSN: 1063-6919, 1063-6919Vydavateľské údaje: United States IEEE 01.06.2019Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2019)“…Unsupervised domain mapping aims to learn a function GXY to translate domain X to Y in the absence of paired examples. Finding the optimal GXY without paired…”
Získať plný text
Konferenčný príspevok.. Journal Article -
10
CRAFT: Concept Recursive Activation FacTorization for Explainability
ISSN: 1063-6919, 1063-6919Vydavateľské údaje: United States IEEE 01.06.2023Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2023)“…Attribution methods, which employ heatmaps to identify the most influential regions of an image that impact model decisions, have gained widespread popularity…”
Získať plný text
Konferenčný príspevok.. Journal Article -
11
Deep Ordinal Regression Network for Monocular Depth Estimation
ISSN: 1063-6919, 1063-6919Vydavateľské údaje: United States IEEE 01.06.2018Vydané v 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (01.06.2018)“…Monocular depth estimation, which plays a crucial role in understanding 3D scene geometry, is an ill-posed problem. Recent methods have gained significant…”
Získať plný text
Konferenčný príspevok.. Journal Article -
12
Few-Shot Segmentation Without Meta-Learning: A Good Transductive Inference Is All You Need?
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2021Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2021)“…We show that the way inference is performed in few-shot segmentation tasks has a substantial effect on performances-an aspect often overlooked in the…”
Získať plný text
Konferenčný príspevok.. -
13
Staged encoder training for cross-camera person re-identification
ISSN: 1863-1703, 1863-1711Vydavateľské údaje: London Springer London 01.04.2024Vydané v Signal, image and video processing (01.04.2024)“…As a cross-camera retrieval problem, person re-identification (ReID) suffers from image style variations caused by camera parameters, lighting and other…”
Získať plný text
Journal Article -
14
Image Segmentation Using Text and Image Prompts
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…Image segmentation is usually addressed by training a model for a fixed set of object classes. Incorporating additional classes or more complex queries later…”
Získať plný text
Konferenčný príspevok.. -
15
Two-stream lightweight sign language transformer
ISSN: 0932-8092, 1432-1769Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2022Vydané v Machine vision and applications (01.09.2022)“…Despite the recent progress of continuous sign language translation-based video, a variety of deep learning models are difficult to apply to the real-time…”
Získať plný text
Journal Article -
16
Improving neural implicit surfaces geometry with patch warping
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…Neural implicit surfaces have become an important technique for multi-view 3D reconstruction but their accuracy remains limited. In this paper, we argue that…”
Získať plný text
Konferenčný príspevok.. -
17
Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning
ISSN: 1063-6919, 1063-6919Vydavateľské údaje: United States IEEE 01.06.2021Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2021)“…Fast and accurate reconstruction of magnetic resonance (MR) images from under-sampled data is important in many clinical applications. In recent years, deep…”
Získať plný text
Konferenčný príspevok.. Journal Article -
18
Squeeze-and-Excitation Networks
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2018Vydané v 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (01.06.2018)“…Convolutional neural networks are built upon the convolution operation, which extracts informative features by fusing spatial and channel-wise information…”
Získať plný text
Konferenčný príspevok.. -
19
MobileNetV2: Inverted Residuals and Linear Bottlenecks
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2018Vydané v 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (01.06.2018)“…In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and…”
Získať plný text
Konferenčný príspevok.. -
20
DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…Deep network architectures struggle to continually learn new tasks without forgetting the previous tasks. A recent trend indicates that dynamic architectures…”
Získať plný text
Konferenčný príspevok..

