Výsledky vyhľadávania - "Hardware Integrated circuits Reconfigurable logic and FPGAs"
-
1
Gemmini: Enabling Systematic Deep-Learning Architecture Evaluation via Full-Stack Integration
Vydavateľské údaje: IEEE 05.12.2021Vydané v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…DNN accelerators are often developed and evaluated in isolation without considering the cross-stack, system-level effects in real-world environments. This…”
Získať plný text
Konferenčný príspevok.. -
2
Caffeine: Towards uniformed representation and acceleration for deep convolutional neural networks
ISSN: 1558-2434Vydavateľské údaje: ACM 01.11.2016Vydané v Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design (01.11.2016)“…With the recent advancement of multilayer convolutional neural networks (CNN), deep learning has achieved amazing success in many areas, especially in visual…”
Získať plný text
Konferenčný príspevok.. -
3
DSPlacer: DSP Placement for FPGA-based CNN Accelerator
Vydavateľské údaje: IEEE 22.06.2025Vydané v 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“…Deploying convolutional neural networks (CNNs) on hardware platforms like Field Programmable Gate Arrays (FPGAs) has garnered significant attention due to…”
Získať plný text
Konferenčný príspevok.. -
4
ANT: Exploiting Adaptive Numerical Data Type for Low-bit Deep Neural Network Quantization
Vydavateľské údaje: IEEE 01.10.2022Vydané v 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO) (01.10.2022)“…Quantization is a technique to reduce the computation and memory cost of DNN models, which are getting increasingly large. Existing quantization solutions use…”
Získať plný text
Konferenčný príspevok.. -
5
Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks
Vydavateľské údaje: IEEE 01.09.2021Vydané v 2021 30th International Conference on Parallel Architectures and Compilation Techniques (PACT) (01.09.2021)“…Emerging edge computing platforms often contain machine learning (ML) accelerators that can accelerate inference for a wide range of neural network (NN)…”
Získať plný text
Konferenčný príspevok.. -
6
CoNDA: Efficient Cache Coherence Support for Near-Data Accelerators
ISSN: 2575-713XVydavateľské údaje: ACM 01.06.2019Vydané v 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA) (01.06.2019)“…Specialized on-chip accelerators are widely used to improve the energy efficiency of computing systems. Recent advances in memory technology have enabled…”
Získať plný text
Konferenčný príspevok.. -
7
Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and Algorithm Co-design
Vydavateľské údaje: IEEE 01.10.2022Vydané v 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO) (01.10.2022)“…Attention-based neural networks have become pervasive in many AI tasks. Despite their excellent algorithmic performance, the use of the attention mechanism and…”
Získať plný text
Konferenčný príspevok.. -
8
BlockGNN: Towards Efficient GNN Acceleration Using Block-Circulant Weight Matrices
Vydavateľské údaje: IEEE 05.12.2021Vydané v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…In recent years, Graph Neural Networks (GNNs) appear to be state-of-the-art algorithms for analyzing non-euclidean graph data. By applying deep-learning to…”
Získať plný text
Konferenčný príspevok.. -
9
NAAS: Neural Accelerator Architecture Search
Vydavateľské údaje: IEEE 05.12.2021Vydané v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…Data-driven, automatic design space exploration of neural accelerator architecture is desirable for specialization and productivity. Previous frameworks focus…”
Získať plný text
Konferenčný príspevok.. -
10
Laconic Deep Learning Inference Acceleration
ISSN: 2575-713XVydavateľské údaje: ACM 01.06.2019Vydané v 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA) (01.06.2019)“…We present a method for transparently identifying ineffectual computations during inference with Deep Learning models. Specifically, by decomposing…”
Získať plný text
Konferenčný príspevok.. -
11
High-Performance FPGA-based Accelerator for Bayesian Neural Networks
Vydavateľské údaje: IEEE 05.12.2021Vydané v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…Neural networks (NNs) have demonstrated their potential in a wide range of applications such as image recognition, decision making or recommendation systems…”
Získať plný text
Konferenčný príspevok.. -
12
DFX: A Low-latency Multi-FPGA Appliance for Accelerating Transformer-based Text Generation
Vydavateľské údaje: IEEE 01.10.2022Vydané v 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO) (01.10.2022)“…Transformer is a deep learning language model widely used for natural language processing (NLP) services in datacenters. Among transformer models, Generative…”
Získať plný text
Konferenčný príspevok.. -
13
PolySA: Polyhedral-Based Systolic Array Auto-Compilation
ISSN: 1558-2434Vydavateľské údaje: ACM 01.11.2018Vydané v 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (01.11.2018)“…Automatic systolic array generation has long been an interesting topic due to the need to reduce the lengthy development cycles of manual designs. Existing…”
Získať plný text
Konferenčný príspevok.. -
14
CrossLight: A Cross-Layer Optimized Silicon Photonic Neural Network Accelerator
Vydavateľské údaje: IEEE 05.12.2021Vydané v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…Domain-specific neural network accelerators have seen growing interest in recent years due to their improved energy efficiency and performance compared to CPUs…”
Získať plný text
Konferenčný príspevok.. -
15
SGX-FPGA: Trusted Execution Environment for CPU-FPGA Heterogeneous Architecture
Vydavateľské údaje: IEEE 05.12.2021Vydané v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…Trusted execution environments (TEEs), such as Intel SGX, have become a popular security primitive with minimum trusted computing base (TCB) and attack…”
Získať plný text
Konferenčný príspevok.. -
16
WSQ-AdderNet: Efficient Weight Standardization based Quantized AdderNet FPGA Accelerator Design with High-Density INT8 DSP-LUT Co-Packing Optimization
ISSN: 1558-2434Vydavateľské údaje: ACM 29.10.2022Vydané v 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) (29.10.2022)“…Convolutional neural networks (CNNs) have been widely adopted for various machine intelligence tasks. Nevertheless, CNNs are still known to be computational…”
Získať plný text
Konferenčný príspevok.. -
17
FPGA-TrustZone: Security Extension of TrustZone to FPGA for SoC-FPGA Heterogeneous Architecture
Vydavateľské údaje: IEEE 22.06.2025Vydané v 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“…To address the growing security issues faced by ARM-based mobile devices today, TrustZone was adopted to provide a trusted execution environment (TEE) to…”
Získať plný text
Konferenčný príspevok.. -
18
DuoQ: A DSP Utilization-aware and Outlier-free Quantization for FPGA-based LLMs Acceleration
Vydavateľské údaje: IEEE 22.06.2025Vydané v 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“…Quantization enables efficient deployment of large language models (LLMs) on FPGAs, but its presence of outliers affects the accuracy of the quantized model…”
Získať plný text
Konferenčný príspevok.. -
19
April: Accuracy-Improved Floating-Point Approximation For Neural Network Accelerators
Vydavateľské údaje: IEEE 22.06.2025Vydané v 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“…Neural Networks (NNs) have achieved breakthroughs in computer vision and natural language processing. However, modern models are computationally expensive,…”
Získať plný text
Konferenčný príspevok.. -
20
An Algorithm-Hardware Co-design Based on Revised Microscaling Format Quantization for Accelerating Large Language Models
Vydavateľské údaje: IEEE 22.06.2025Vydané v 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“…The narrow-bit-width data format is crucial for reducing the computation and storage costs of modern deep learning applications, particularly in large language…”
Získať plný text
Konferenčný príspevok..