Výsledky vyhľadávania - "Hardware Integrated circuits Reconfigurable logic and FPGAs"

  1. 1
  2. 2

    Caffeine: Towards uniformed representation and acceleration for deep convolutional neural networks Autor Chen Zhang, Zhenman Fang, Peipei Zhou, Peichen Pan, Jason Cong

    ISSN: 1558-2434
    Vydavateľské údaje: ACM 01.11.2016
    “…With the recent advancement of multilayer convolutional neural networks (CNN), deep learning has achieved amazing success in many areas, especially in visual…”
    Získať plný text
    Konferenčný príspevok..
  3. 3

    DSPlacer: DSP Placement for FPGA-based CNN Accelerator Autor Xie, Baohui, Zhu, Xinrui, Lu, Zhiyuan, Pu, Yuan, Wu, Tongkai, Zou, Xiaofeng, Yu, Bei, Chen, Tinghuan

    Vydavateľské údaje: IEEE 22.06.2025
    “…Deploying convolutional neural networks (CNNs) on hardware platforms like Field Programmable Gate Arrays (FPGAs) has garnered significant attention due to…”
    Získať plný text
    Konferenčný príspevok..
  4. 4

    ANT: Exploiting Adaptive Numerical Data Type for Low-bit Deep Neural Network Quantization Autor Guo, Cong, Zhang, Chen, Leng, Jingwen, Liu, Zihan, Yang, Fan, Liu, Yunxin, Guo, Minyi, Zhu, Yuhao

    Vydavateľské údaje: IEEE 01.10.2022
    “…Quantization is a technique to reduce the computation and memory cost of DNN models, which are getting increasingly large. Existing quantization solutions use…”
    Získať plný text
    Konferenčný príspevok..
  5. 5

    Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks Autor Boroumand, Amirali, Ghose, Saugata, Akin, Berkin, Narayanaswami, Ravi, Oliveira, Geraldo F., Ma, Xiaoyu, Shiu, Eric, Mutlu, Onur

    Vydavateľské údaje: IEEE 01.09.2021
    “…Emerging edge computing platforms often contain machine learning (ML) accelerators that can accelerate inference for a wide range of neural network (NN)…”
    Získať plný text
    Konferenčný príspevok..
  6. 6

    CoNDA: Efficient Cache Coherence Support for Near-Data Accelerators Autor Boroumand, Amirali, Ghose, Saugata, Patel, Minesh, Hassan, Hasan, Lucia, Brandon, Ausavarungnirun, Rachata, Hsieh, Kevin, Hajinazar, Nastaran, Malladi, Krishna T., Zheng, Hongzhong, Mutlu, Onur

    ISSN: 2575-713X
    Vydavateľské údaje: ACM 01.06.2019
    “…Specialized on-chip accelerators are widely used to improve the energy efficiency of computing systems. Recent advances in memory technology have enabled…”
    Získať plný text
    Konferenčný príspevok..
  7. 7

    Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and Algorithm Co-design Autor Fan, Hongxiang, Chau, Thomas, Venieris, Stylianos I., Lee, Royson, Kouris, Alexandros, Luk, Wayne, Lane, Nicholas D., Abdelfattah, Mohamed S.

    Vydavateľské údaje: IEEE 01.10.2022
    “…Attention-based neural networks have become pervasive in many AI tasks. Despite their excellent algorithmic performance, the use of the attention mechanism and…”
    Získať plný text
    Konferenčný príspevok..
  8. 8

    BlockGNN: Towards Efficient GNN Acceleration Using Block-Circulant Weight Matrices Autor Zhou, Zhe, Shi, Bizhao, Zhang, Zhe, Guan, Yijin, Sun, Guangyu, Luo, Guojie

    Vydavateľské údaje: IEEE 05.12.2021
    “…In recent years, Graph Neural Networks (GNNs) appear to be state-of-the-art algorithms for analyzing non-euclidean graph data. By applying deep-learning to…”
    Získať plný text
    Konferenčný príspevok..
  9. 9

    NAAS: Neural Accelerator Architecture Search Autor Lin, Yujun, Yang, Mengtian, Han, Song

    Vydavateľské údaje: IEEE 05.12.2021
    “…Data-driven, automatic design space exploration of neural accelerator architecture is desirable for specialization and productivity. Previous frameworks focus…”
    Získať plný text
    Konferenčný príspevok..
  10. 10

    Laconic Deep Learning Inference Acceleration Autor Sharify, Sayeh, Lascorz, Alberto Delmas, Mahmoud, Mostafa, Nikolic, Milos, Siu, Kevin, Stuart, Dylan Malone, Poulos, Zissis, Moshovos, Andreas

    ISSN: 2575-713X
    Vydavateľské údaje: ACM 01.06.2019
    “…We present a method for transparently identifying ineffectual computations during inference with Deep Learning models. Specifically, by decomposing…”
    Získať plný text
    Konferenčný príspevok..
  11. 11

    High-Performance FPGA-based Accelerator for Bayesian Neural Networks Autor Fan, Hongxiang, Ferianc, Martin, Rodrigues, Miguel, Zhou, Hongyu, Niu, Xinyu, Luk, Wayne

    Vydavateľské údaje: IEEE 05.12.2021
    “…Neural networks (NNs) have demonstrated their potential in a wide range of applications such as image recognition, decision making or recommendation systems…”
    Získať plný text
    Konferenčný príspevok..
  12. 12

    DFX: A Low-latency Multi-FPGA Appliance for Accelerating Transformer-based Text Generation Autor Hong, Seongmin, Moon, Seungjae, Kim, Junsoo, Lee, Sungjae, Kim, Minsub, Lee, Dongsoo, Kim, Joo-Young

    Vydavateľské údaje: IEEE 01.10.2022
    “…Transformer is a deep learning language model widely used for natural language processing (NLP) services in datacenters. Among transformer models, Generative…”
    Získať plný text
    Konferenčný príspevok..
  13. 13

    PolySA: Polyhedral-Based Systolic Array Auto-Compilation Autor Cong, Jason, Wang, Jie

    ISSN: 1558-2434
    Vydavateľské údaje: ACM 01.11.2018
    “…Automatic systolic array generation has long been an interesting topic due to the need to reduce the lengthy development cycles of manual designs. Existing…”
    Získať plný text
    Konferenčný príspevok..
  14. 14

    CrossLight: A Cross-Layer Optimized Silicon Photonic Neural Network Accelerator Autor Sunny, Febin, Mirza, Asif, Nikdast, Mahdi, Pasricha, Sudeep

    Vydavateľské údaje: IEEE 05.12.2021
    “…Domain-specific neural network accelerators have seen growing interest in recent years due to their improved energy efficiency and performance compared to CPUs…”
    Získať plný text
    Konferenčný príspevok..
  15. 15

    SGX-FPGA: Trusted Execution Environment for CPU-FPGA Heterogeneous Architecture Autor Xia, Ke, Luo, Yukui, Xu, Xiaolin, Wei, Sheng

    Vydavateľské údaje: IEEE 05.12.2021
    “…Trusted execution environments (TEEs), such as Intel SGX, have become a popular security primitive with minimum trusted computing base (TCB) and attack…”
    Získať plný text
    Konferenčný príspevok..
  16. 16

    WSQ-AdderNet: Efficient Weight Standardization based Quantized AdderNet FPGA Accelerator Design with High-Density INT8 DSP-LUT Co-Packing Optimization Autor Zhang, Yunxiang, Sun, Biao, Jiang, Weixiong, Ha, Yajun, Hu, Miao, Zhao, Wenfeng

    ISSN: 1558-2434
    Vydavateľské údaje: ACM 29.10.2022
    “…Convolutional neural networks (CNNs) have been widely adopted for various machine intelligence tasks. Nevertheless, CNNs are still known to be computational…”
    Získať plný text
    Konferenčný príspevok..
  17. 17

    FPGA-TrustZone: Security Extension of TrustZone to FPGA for SoC-FPGA Heterogeneous Architecture Autor Wang, Shupeng, Fan, Xindong, Xu, Xiao, Wang, Shuchen, Ju, Lei, Zhou, Zimeng

    Vydavateľské údaje: IEEE 22.06.2025
    “…To address the growing security issues faced by ARM-based mobile devices today, TrustZone was adopted to provide a trusted execution environment (TEE) to…”
    Získať plný text
    Konferenčný príspevok..
  18. 18

    DuoQ: A DSP Utilization-aware and Outlier-free Quantization for FPGA-based LLMs Acceleration Autor Yu, Zhuoquan, Ji, Huidong, Cao, Yue, Wu, Junfu, Yan, Xiaoze, Zheng, Lirong, Zou, Zhuo

    Vydavateľské údaje: IEEE 22.06.2025
    “…Quantization enables efficient deployment of large language models (LLMs) on FPGAs, but its presence of outliers affects the accuracy of the quantized model…”
    Získať plný text
    Konferenčný príspevok..
  19. 19

    April: Accuracy-Improved Floating-Point Approximation For Neural Network Accelerators Autor Chen, Yonghao, Zou, Jiaxiang, Chen, Xinyu

    Vydavateľské údaje: IEEE 22.06.2025
    “…Neural Networks (NNs) have achieved breakthroughs in computer vision and natural language processing. However, modern models are computationally expensive,…”
    Získať plný text
    Konferenčný príspevok..
  20. 20

    An Algorithm-Hardware Co-design Based on Revised Microscaling Format Quantization for Accelerating Large Language Models Autor Hao, Yingbo, Chen, Huangxu, Zou, Yi, Yang, Yanfeng

    Vydavateľské údaje: IEEE 22.06.2025
    “…The narrow-bit-width data format is crucial for reducing the computation and storage costs of modern deep learning applications, particularly in large language…”
    Získať plný text
    Konferenčný príspevok..