Suchergebnisse - "H.2.8 Database Applications. Data mining"

  • Treffer 1 - 5 von 5
Treffer weiter einschränken
  1. 1

    iVisClustering: An Interactive Visual Document Clustering via Topic Modeling von Lee, Hanseung, Kihm, Jaeyeon, Choo, Jaegul, Stasko, John, Park, Haesun

    ISSN: 0167-7055, 1467-8659
    Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.06.2012
    Veröffentlicht in Computer graphics forum (01.06.2012)
    “… Clustering plays an important role in many large‐scale data analyses providing users with an overall understanding of their data. Nonetheless, clustering is …”
    Volltext
    Journal Article
  2. 2

    Subspace search and visualization to make sense of alternative clusterings in high-dimensional data von Tatu, A., Maas, F., Farber, I., Bertini, E., Schreck, T., Seidl, T., Keim, D.

    ISBN: 1467347523, 9781467347525
    Veröffentlicht: IEEE 01.01.2012
    “… In explorative data analysis, the data under consideration often resides in a high-dimensional (HD) data space. Currently many methods are available to analyze …”
    Volltext
    Tagungsbericht
  3. 3

    Using random projections to identify class-separating variables in high-dimensional spaces von Anand, A., Wilkinson, L., Tuan Nhon Dang

    ISBN: 1467300152, 9781467300155
    Veröffentlicht: IEEE 01.10.2011
    “… Projection Pursuit has been an effective method for finding interesting low-dimensional (usually 2D) projections in multidimensional spaces. Unfortunately, …”
    Volltext
    Tagungsbericht
  4. 4

    Visual analytics for detecting behaviour patterns in geo-temporal data von Hundt, Michael, Siirak, Natascha M., Wildnei, Manuel

    Veröffentlicht: IEEE 01.10.2014
    “… Today raw data get more complex and are obtained from different sources. In this paper, the data sources evaluated are GPS tracks of thirty five cards and …”
    Volltext
    Tagungsbericht
  5. 5

    Visual Exploration of Spatio-temporal Relationships for Scientific Data von Mehta, S., Parthasarathy, S., Machiraju, R.

    ISBN: 1424405912, 9781424405916
    Veröffentlicht: IEEE 01.10.2006
    “… Spatio-temporal relationships among features extracted from temporally-varying scientific datasets can provide useful information about the evolution of an …”
    Volltext
    Tagungsbericht