Suchergebnisse - "H.2.8 Database Applications. Data mining"
-
1
iVisClustering: An Interactive Visual Document Clustering via Topic Modeling
ISSN: 0167-7055, 1467-8659Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.06.2012Veröffentlicht in Computer graphics forum (01.06.2012)“… Clustering plays an important role in many large‐scale data analyses providing users with an overall understanding of their data. Nonetheless, clustering is …”
Volltext
Journal Article -
2
Subspace search and visualization to make sense of alternative clusterings in high-dimensional data
ISBN: 1467347523, 9781467347525Veröffentlicht: IEEE 01.01.2012Veröffentlicht in 2012 IEEE Conference on Visual Analytics Science and Technology (01.01.2012)“… In explorative data analysis, the data under consideration often resides in a high-dimensional (HD) data space. Currently many methods are available to analyze …”
Volltext
Tagungsbericht -
3
Using random projections to identify class-separating variables in high-dimensional spaces
ISBN: 1467300152, 9781467300155Veröffentlicht: IEEE 01.10.2011Veröffentlicht in 2011 IEEE Conference on Visual Analytics Science and Technology (01.10.2011)“… Projection Pursuit has been an effective method for finding interesting low-dimensional (usually 2D) projections in multidimensional spaces. Unfortunately, …”
Volltext
Tagungsbericht -
4
Visual analytics for detecting behaviour patterns in geo-temporal data
Veröffentlicht: IEEE 01.10.2014Veröffentlicht in 2014 IEEE Conference on Visual Analytics Science and Technology (VAST) (01.10.2014)“… Today raw data get more complex and are obtained from different sources. In this paper, the data sources evaluated are GPS tracks of thirty five cards and …”
Volltext
Tagungsbericht -
5
Visual Exploration of Spatio-temporal Relationships for Scientific Data
ISBN: 1424405912, 9781424405916Veröffentlicht: IEEE 01.10.2006Veröffentlicht in VAST, IEEE Symposium on Visual Analytics Science and Technology, 2006 : proceedings, Baltimore, Maryland, USA, October 31-November 2, 2006 (01.10.2006)“… Spatio-temporal relationships among features extracted from temporally-varying scientific datasets can provide useful information about the evolution of an …”
Volltext
Tagungsbericht

