Suchergebnisse - "Graph masked autoencoder"
-
1
Rethinking link prediction: A multi-scale graph masked autoencoder
ISSN: 0925-2312Veröffentlicht: Elsevier B.V 01.02.2026Veröffentlicht in Neurocomputing (Amsterdam) (01.02.2026)“… Therefore, we revisit these two approaches from a novel perspective and propose a multi-scale graph masked autoencoder (MS-GMAE …”
Volltext
Journal Article -
2
DVGMAE: Self-Supervised Dynamic Variational Graph Masked Autoencoder
ISSN: 2162-237X, 2162-2388, 2162-2388Veröffentlicht: United States IEEE 01.10.2025Veröffentlicht in IEEE transaction on neural networks and learning systems (01.10.2025)“… Although contrastive self-supervised learning (SSL) on dynamic graphs has made significant success, the issue of heavy reliance on data augmentation and …”
Volltext
Journal Article -
3
Learning-Induced Channel Extrapolation for Fluid Antenna Systems Using Asymmetric Graph Masked Autoencoder
ISSN: 2162-2337, 2162-2345Veröffentlicht: Piscataway IEEE 01.06.2024Veröffentlicht in IEEE wireless communications letters (01.06.2024)“… In so doing, we then contrive a customized solution, referred to as an asymmetric graph masked autoencoder (AGMAE …”
Volltext
Journal Article -
4
MAEST: accurately spatial domain detection in spatial transcriptomics with graph masked autoencoder
ISSN: 1467-5463, 1477-4054, 1477-4054Veröffentlicht: England Oxford University Press 04.03.2025Veröffentlicht in Briefings in bioinformatics (04.03.2025)“… MAEST leverages graph masked autoencoders to denoise and refine representations while incorporating graph contrastive learning to prevent feature collapse and enhance model robustness …”
Volltext
Journal Article -
5
GMAEEG: A Self-Supervised Graph Masked Autoencoder for EEG Representation Learning
ISSN: 2168-2194, 2168-2208, 2168-2208Veröffentlicht: United States IEEE 01.11.2024Veröffentlicht in IEEE journal of biomedical and health informatics (01.11.2024)“… To alleviate these challenges, this work proposes a self-supervised graph masked autoencoder for EEG representation learning, named GMAEEG …”
Volltext
Journal Article -
6
Topology-Guided Graph Masked Autoencoder Learning for Population-Based Neurodevelopmental Disorder Diagnosis
ISSN: 1534-4320, 1558-0210, 1558-0210Veröffentlicht: United States IEEE 01.01.2025Veröffentlicht in IEEE transactions on neural systems and rehabilitation engineering (01.01.2025)“… -individual associations in population. To solve these problems, this work proposes a novel approach for detecting abnormal neural circuits associated with brain diseases, named Topology-guided Graph Masked autoencoder Learning method (TGML …”
Volltext
Journal Article -
7
KGMAEDDI: Knowledge Graph and Molecular-Graph Masked Autoencoder for Drug-Drug Interaction Prediction
ISSN: 2168-2194, 2168-2208, 2168-2208Veröffentlicht: United States IEEE 18.09.2025Veröffentlicht in IEEE journal of biomedical and health informatics (18.09.2025)“… Drug-drug interaction (DDI) prediction is essential for drug development and clinical safety. Early studies mainly relied on large labeled datasets and focused …”
Volltext
Journal Article -
8
DMSDRec: Dynamic Structure-Aware Graph Masked Autoencoder and Spatiotemporal Diffusion for Next-POI Recommendation
ISSN: 1939-1374, 2372-0204Veröffentlicht: IEEE 01.07.2025Veröffentlicht in IEEE transactions on services computing (01.07.2025)“… ). Specifically, we introduce a dynamic structure-aware improved graph masked autoencoder that adaptively and dynamically distills global transitional …”
Volltext
Journal Article -
9
STGMAE: A GNSS data-driven pre-training spatiotemporal graph masked autoencoder for agricultural machinery trajectory operation mode identification
ISSN: 2589-7217, 2589-7217Veröffentlicht: Elsevier B.V 01.03.2026Veröffentlicht in Artificial intelligence in agriculture (01.03.2026)“… Utilizing spatiotemporal features in massive amounts of trajectory data to identify the operation mode of agricultural machinery trajectories is a key task in …”
Volltext
Journal Article -
10
Joint masking and self-supervised strategies for inferring small molecule-miRNA associations
ISSN: 2162-2531, 2162-2531Veröffentlicht: United States Elsevier Inc 12.03.2024Veröffentlicht in Molecular therapy. Nucleic acids (12.03.2024)“… Inferring small molecule-miRNA associations (MMAs) is crucial for revealing the intricacies of biological processes and disease mechanisms. Deep learning, …”
Volltext
Journal Article -
11
Graph Masked Autoencoder for Sequential Recommendation
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 01.06.2023Veröffentlicht in arXiv.org (01.06.2023)“… In light of this, we propose a simple yet effective Graph Masked AutoEncoder-enhanced sequential Recommender …”
Volltext
Paper -
12
IGedgeMAE: Topology-Aware Graph Masked Autoencoder with Dynamic Edge Importance Guidance
Veröffentlicht: IEEE 09.05.2025Veröffentlicht in 2025 International Conference on Information Management and Computing Technology (ICIMCT) (09.05.2025)“… In the context of the digital integration of culture and tourism in Beiting, most of the existing related data mining technical methods only focus on the …”
Volltext
Tagungsbericht -
13
UMGAD: Unsupervised Multiplex Graph Anomaly Detection
ISSN: 2375-026XVeröffentlicht: IEEE 19.05.2025Veröffentlicht in Data engineering (19.05.2025)“… Graph anomaly detection (GAD) is a critical task in graph machine learning, with the primary objective of identifying anomalous nodes that deviate …”
Volltext
Tagungsbericht -
14
Graph Masked Autoencoder for Spatio-Temporal Graph Learning
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 14.10.2024Veröffentlicht in arXiv.org (14.10.2024)“… To address these challenges, we propose a novel spatio-temporal graph masked autoencoder paradigm that explores generative self-supervised learning for effective spatio-temporal data augmentation …”
Volltext
Paper -
15
GiGaMAE: Generalizable Graph Masked Autoencoder via Collaborative Latent Space Reconstruction
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 18.08.2023Veröffentlicht in arXiv.org (18.08.2023)“… To tackle this issue, we propose a novel graph masked autoencoder framework called GiGaMAE …”
Volltext
Paper -
16
Multilevel Contrastive Graph Masked Autoencoders for Unsupervised Graph-Structure Learning
ISSN: 2162-237X, 2162-2388, 2162-2388Veröffentlicht: United States IEEE 01.02.2025Veröffentlicht in IEEE transaction on neural networks and learning systems (01.02.2025)“… performance in different graph analytical tasks, how to utilize the popular graph masked autoencoder to sufficiently acquire effective …”
Volltext
Journal Article -
17
Self-Supervised Graph Masked Autoencoders for Hyperspectral Image Classification
ISSN: 0196-2892, 1558-0644Veröffentlicht: New York IEEE 2025Veröffentlicht in IEEE transactions on geoscience and remote sensing (2025)“… To counter these problems, this work investigates a feature extraction module based on self-supervised graph masked autoencoders (SGMAEs …”
Volltext
Journal Article -
18
MGM-AE: Self-Supervised Learning on 3D Shape Using Mesh Graph Masked Autoencoders
ISSN: 2472-6737, 2642-9381Veröffentlicht: United States IEEE 01.01.2024Veröffentlicht in IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision (01.01.2024)“… Our method, Mesh Graph Masked Autoencoders (MGM-AE), utilizes masked autoencoding to pre-train the model and extract important features from the data …”
Volltext
Tagungsbericht Journal Article -
19
Heterogeneous Graph Masked Autoencoders
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 10.02.2023Veröffentlicht in arXiv.org (10.02.2023)“… ? In light of this, we study the problem of generative SSL on heterogeneous graphs and propose HGMAE, a novel heterogeneous graph masked autoencoder model to address these challenges …”
Volltext
Paper -
20
CMGAE: Enhancing Graph Masked Autoencoders through the Use of Contrastive Learning
Veröffentlicht: IEEE 09.12.2023Veröffentlicht in 2023 2nd International Conference on Machine Learning, Control, and Robotics (MLCR) (09.12.2023)“… Contrastive learning and generative methodologies in graph self-supervised learning offer efficient strategies for managing graph data with scarce labels …”
Volltext
Tagungsbericht