Suchergebnisse - "Graph masked autoencoder"

  1. 1

    Rethinking link prediction: A multi-scale graph masked autoencoder von Zhang, Guotai, Zuo, Enguang, Yan, Ziwei, Chen, Chen, Chen, Cheng, Lv, Xiaoyi

    ISSN: 0925-2312
    Veröffentlicht: Elsevier B.V 01.02.2026
    Veröffentlicht in Neurocomputing (Amsterdam) (01.02.2026)
    “… Therefore, we revisit these two approaches from a novel perspective and propose a multi-scale graph masked autoencoder (MS-GMAE …”
    Volltext
    Journal Article
  2. 2

    DVGMAE: Self-Supervised Dynamic Variational Graph Masked Autoencoder von Gao, Mengzhou, Zhang, Xinxun, Jiao, Pengfei, Li, Tianpeng, Zhao, Zhidong

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.10.2025
    “… Although contrastive self-supervised learning (SSL) on dynamic graphs has made significant success, the issue of heavy reliance on data augmentation and …”
    Volltext
    Journal Article
  3. 3

    Learning-Induced Channel Extrapolation for Fluid Antenna Systems Using Asymmetric Graph Masked Autoencoder von Zhang, Haibin, Wang, Jiale, Wang, Chao, Wang, Cheng-Cai, Wong, Kai-Kit, Wang, Bin, Chae, Chan-Byoung

    ISSN: 2162-2337, 2162-2345
    Veröffentlicht: Piscataway IEEE 01.06.2024
    Veröffentlicht in IEEE wireless communications letters (01.06.2024)
    “… In so doing, we then contrive a customized solution, referred to as an asymmetric graph masked autoencoder (AGMAE …”
    Volltext
    Journal Article
  4. 4

    MAEST: accurately spatial domain detection in spatial transcriptomics with graph masked autoencoder von Zhu, Pengfei, Shu, Han, Wang, Yongtian, Wang, Xiaofeng, Zhao, Yuan, Hu, Jialu, Peng, Jiajie, Shang, Xuequn, Tian, Zhen, Chen, Jing, Wang, Tao

    ISSN: 1467-5463, 1477-4054, 1477-4054
    Veröffentlicht: England Oxford University Press 04.03.2025
    Veröffentlicht in Briefings in bioinformatics (04.03.2025)
    “… MAEST leverages graph masked autoencoders to denoise and refine representations while incorporating graph contrastive learning to prevent feature collapse and enhance model robustness …”
    Volltext
    Journal Article
  5. 5

    GMAEEG: A Self-Supervised Graph Masked Autoencoder for EEG Representation Learning von Fu, Zanhao, Zhu, Huaiyu, Zhao, Yisheng, Huan, Ruohong, Zhang, Yi, Chen, Shuohui, Pan, Yun

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Veröffentlicht: United States IEEE 01.11.2024
    Veröffentlicht in IEEE journal of biomedical and health informatics (01.11.2024)
    “… To alleviate these challenges, this work proposes a self-supervised graph masked autoencoder for EEG representation learning, named GMAEEG …”
    Volltext
    Journal Article
  6. 6

    Topology-Guided Graph Masked Autoencoder Learning for Population-Based Neurodevelopmental Disorder Diagnosis von Li, Yueying, Zhang, Xiaotong, Guan, Shihan, Ma, Guolin, Kong, Youyong

    ISSN: 1534-4320, 1558-0210, 1558-0210
    Veröffentlicht: United States IEEE 01.01.2025
    “… -individual associations in population. To solve these problems, this work proposes a novel approach for detecting abnormal neural circuits associated with brain diseases, named Topology-guided Graph Masked autoencoder Learning method (TGML …”
    Volltext
    Journal Article
  7. 7

    KGMAEDDI: Knowledge Graph and Molecular-Graph Masked Autoencoder for Drug-Drug Interaction Prediction von Li, Yu, You, Zhu-Hong, Yang, Yuan, Mi, Cheng-gang

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Veröffentlicht: United States IEEE 18.09.2025
    Veröffentlicht in IEEE journal of biomedical and health informatics (18.09.2025)
    “… Drug-drug interaction (DDI) prediction is essential for drug development and clinical safety. Early studies mainly relied on large labeled datasets and focused …”
    Volltext
    Journal Article
  8. 8

    DMSDRec: Dynamic Structure-Aware Graph Masked Autoencoder and Spatiotemporal Diffusion for Next-POI Recommendation von Li, Yue, Zeng, Jun, Tang, Haoran, Wen, Junhao, Gao, Min, Zhou, Wei

    ISSN: 1939-1374, 2372-0204
    Veröffentlicht: IEEE 01.07.2025
    Veröffentlicht in IEEE transactions on services computing (01.07.2025)
    “… ). Specifically, we introduce a dynamic structure-aware improved graph masked autoencoder that adaptively and dynamically distills global transitional …”
    Volltext
    Journal Article
  9. 9

    STGMAE: A GNSS data-driven pre-training spatiotemporal graph masked autoencoder for agricultural machinery trajectory operation mode identification von Chen, Tailai, Zhai, Weixin

    ISSN: 2589-7217, 2589-7217
    Veröffentlicht: Elsevier B.V 01.03.2026
    Veröffentlicht in Artificial intelligence in agriculture (01.03.2026)
    “… Utilizing spatiotemporal features in massive amounts of trajectory data to identify the operation mode of agricultural machinery trajectories is a key task in …”
    Volltext
    Journal Article
  10. 10

    Joint masking and self-supervised strategies for inferring small molecule-miRNA associations von Zhou, Zhecheng, Zhuo, Linlin, Fu, Xiangzheng, Lv, Juan, Zou, Quan, Qi, Ren

    ISSN: 2162-2531, 2162-2531
    Veröffentlicht: United States Elsevier Inc 12.03.2024
    Veröffentlicht in Molecular therapy. Nucleic acids (12.03.2024)
    “… Inferring small molecule-miRNA associations (MMAs) is crucial for revealing the intricacies of biological processes and disease mechanisms. Deep learning, …”
    Volltext
    Journal Article
  11. 11

    Graph Masked Autoencoder for Sequential Recommendation von Ye, Yaowen, Xia, Lianghao, Huang, Chao

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 01.06.2023
    Veröffentlicht in arXiv.org (01.06.2023)
    “… In light of this, we propose a simple yet effective Graph Masked AutoEncoder-enhanced sequential Recommender …”
    Volltext
    Paper
  12. 12

    IGedgeMAE: Topology-Aware Graph Masked Autoencoder with Dynamic Edge Importance Guidance von Zhang, Guotai, Xie, Xia, Sun, Ruishuang, Zuo, Enguang

    Veröffentlicht: IEEE 09.05.2025
    “… In the context of the digital integration of culture and tourism in Beiting, most of the existing related data mining technical methods only focus on the …”
    Volltext
    Tagungsbericht
  13. 13

    UMGAD: Unsupervised Multiplex Graph Anomaly Detection von Li, Xiang, Qi, Jianpeng, Zhao, Zhongying, Zheng, Guanjie, Cao, Lei, Dong, Junyu, Yu, Yanwei

    ISSN: 2375-026X
    Veröffentlicht: IEEE 19.05.2025
    Veröffentlicht in Data engineering (19.05.2025)
    “… Graph anomaly detection (GAD) is a critical task in graph machine learning, with the primary objective of identifying anomalous nodes that deviate …”
    Volltext
    Tagungsbericht
  14. 14

    Graph Masked Autoencoder for Spatio-Temporal Graph Learning von Zhang, Qianru, Wang, Haixin, Siu-Ming Yiu, Yin, Hongzhi

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 14.10.2024
    Veröffentlicht in arXiv.org (14.10.2024)
    “… To address these challenges, we propose a novel spatio-temporal graph masked autoencoder paradigm that explores generative self-supervised learning for effective spatio-temporal data augmentation …”
    Volltext
    Paper
  15. 15

    GiGaMAE: Generalizable Graph Masked Autoencoder via Collaborative Latent Space Reconstruction von Shi, Yucheng, Dong, Yushun, Tan, Qiaoyu, Li, Jundong, Liu, Ninghao

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 18.08.2023
    Veröffentlicht in arXiv.org (18.08.2023)
    “… To tackle this issue, we propose a novel graph masked autoencoder framework called GiGaMAE …”
    Volltext
    Paper
  16. 16

    Multilevel Contrastive Graph Masked Autoencoders for Unsupervised Graph-Structure Learning von Fu, Sichao, Peng, Qinmu, He, Yang, Wang, Xiaorui, Zou, Bin, Xu, Duanquan, Jing, Xiao-Yuan, You, Xinge

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.02.2025
    “… performance in different graph analytical tasks, how to utilize the popular graph masked autoencoder to sufficiently acquire effective …”
    Volltext
    Journal Article
  17. 17

    Self-Supervised Graph Masked Autoencoders for Hyperspectral Image Classification von Hu, Zhenghao, Tu, Bing, Liu, Bo, He, Yan, Li, Jun, Plaza, Antonio

    ISSN: 0196-2892, 1558-0644
    Veröffentlicht: New York IEEE 2025
    “… To counter these problems, this work investigates a feature extraction module based on self-supervised graph masked autoencoders (SGMAEs …”
    Volltext
    Journal Article
  18. 18

    MGM-AE: Self-Supervised Learning on 3D Shape Using Mesh Graph Masked Autoencoders von Yang, Zhangsihao, Ding, Kaize, Liu, Huan, Wang, Yalin

    ISSN: 2472-6737, 2642-9381
    Veröffentlicht: United States IEEE 01.01.2024
    “… Our method, Mesh Graph Masked Autoencoders (MGM-AE), utilizes masked autoencoding to pre-train the model and extract important features from the data …”
    Volltext
    Tagungsbericht Journal Article
  19. 19

    Heterogeneous Graph Masked Autoencoders von Tian, Yijun, Dong, Kaiwen, Zhang, Chunhui, Zhang, Chuxu, Chawla, Nitesh V

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 10.02.2023
    Veröffentlicht in arXiv.org (10.02.2023)
    “… ? In light of this, we study the problem of generative SSL on heterogeneous graphs and propose HGMAE, a novel heterogeneous graph masked autoencoder model to address these challenges …”
    Volltext
    Paper
  20. 20

    CMGAE: Enhancing Graph Masked Autoencoders through the Use of Contrastive Learning von Yang, Weiwu, Zhou, Liang

    Veröffentlicht: IEEE 09.12.2023
    “… Contrastive learning and generative methodologies in graph self-supervised learning offer efficient strategies for managing graph data with scarce labels …”
    Volltext
    Tagungsbericht