Suchergebnisse - "Graph convolutional network"

Andere Suchmöglichkeiten:

  1. 1

    Graphconvolutionalnetwork‐based interactive prostate segmentation in MR images von Tian, Zhiqiang, Li, Xiaojian, Zheng, Yaoyue, Chen, Zhang, Shi, Zhong, Liu, Lizhi, Fei, Baowei

    ISSN: 0094-2405, 2473-4209, 2473-4209
    Veröffentlicht: United States 01.09.2020
    Veröffentlicht in Medical physics (Lancaster) (01.09.2020)
    “… Methods We propose an interactive segmentation method based on a graph convolutional network (GCN …”
    Volltext
    Journal Article
  2. 2

    PGCN: Pyramidal Graph Convolutional Network for EEG Emotion Recognition von Jin, Ming, Du, Changde, He, Huiguang, Cai, Ting, Li, Jinpeng

    ISSN: 1520-9210, 1941-0077
    Veröffentlicht: IEEE 2024
    Veröffentlicht in IEEE transactions on multimedia (2024)
    “… In the last decade, electroencephalogram (EEG)-based emotion recognition has been intensively investigated due to its prominative accuracy and reliability, and graph convolutional network (GCN …”
    Volltext
    Journal Article
  3. 3

    A Mutual Multi-Scale Triplet Graph Convolutional Network for Classification of Brain Disorders Using Functional or Structural Connectivity von Yao, Dongren, Sui, Jing, Wang, Mingliang, Yang, Erkun, Jiaerken, Yeerfan, Luo, Na, Yap, Pew-Thian, Liu, Mingxia, Shen, Dinggang

    ISSN: 0278-0062, 1558-254X, 1558-254X
    Veröffentlicht: United States IEEE 01.04.2021
    Veröffentlicht in IEEE transactions on medical imaging (01.04.2021)
    “… Capturing network topology, graph convolutional networks (GCNs) have demonstrated to be superior in learning network representations tailored for identifying specific brain disorders …”
    Volltext
    Journal Article
  4. 4

    Multi-relation graph convolutional network for Alzheimer’s disease diagnosis using structural MRI von Zhang, Jin, He, Xiaohai, Qing, Linbo, Chen, Xiang, Liu, Yan, Chen, Honggang

    ISSN: 0950-7051, 1872-7409
    Veröffentlicht: Elsevier B.V 21.06.2023
    Veröffentlicht in Knowledge-based systems (21.06.2023)
    “… Structural magnetic resonance imaging (sMRI) is widely applied in Alzheimer’s disease (AD) diagnosis tasks by reflecting structural anomalies of the brain …”
    Volltext
    Journal Article
  5. 5

    Skeleton-based human action evaluation using graph convolutional network for monitoring Alzheimer’s progression von Yu, Bruce X.B., Liu, Yan, Chan, Keith C.C., Yang, Qintai, Wang, Xiaoying

    ISSN: 0031-3203, 1873-5142
    Veröffentlicht: Elsevier Ltd 01.11.2021
    Veröffentlicht in Pattern recognition (01.11.2021)
    “… •We propose a novel two-task graph convolutional network (2T-GCN) to represent skeleton data for human action evaluation (HAE …”
    Volltext
    Journal Article
  6. 6

    Multi-scale enhanced graph convolutional network for mild cognitive impairment detection von Lei, Baiying, Zhu, Yun, Yu, Shuangzhi, Hu, Huoyou, Xu, Yanwu, Yue, Guanghui, Wang, Tianfu, Zhao, Cheng, Chen, Shaobin, Yang, Peng, Song, Xuegang, Xiao, Xiaohua, Wang, Shuqiang

    ISSN: 0031-3203, 1873-5142
    Veröffentlicht: Elsevier Ltd 01.02.2023
    Veröffentlicht in Pattern recognition (01.02.2023)
    “… •We design a MCI-graph framework which integrates both non-image information and image information. We use LWCC to extract the feature to avoid the high …”
    Volltext
    Journal Article
  7. 7

    Early detection of Parkinson’s disease using a multi area graph convolutional network von Huo, Hua, Zhang, Chen, Liu, Wei, Zhao, Changwei, Ma, Lan, Wang, Jinxuan, Xu, Ningya

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 14.02.2025
    Veröffentlicht in Scientific reports (14.02.2025)
    “… introduces an innovative deep learning approach, namely Multi-area Attention Spatiotemporal Directed Graph Convolutional Network (Ma-ST-DGN …”
    Volltext
    Journal Article
  8. 8

    An extensible hierarchical graph convolutional network for early Alzheimer’s disease identification von Tian, Xu, Liu, Yan, Wang, Ling, Zeng, Xiangzhu, Huang, Yulang, Wang, Zeng

    ISSN: 0169-2607, 1872-7565, 1872-7565
    Veröffentlicht: Ireland Elsevier B.V 01.08.2023
    Veröffentlicht in Computer methods and programs in biomedicine (01.08.2023)
    “… : In this study, we propose an extensible hierarchical graph convolutional network (EH-GCN) for early AD identification …”
    Volltext
    Journal Article
  9. 9

    ADMGCN: Graph Convolutional Network for Alzheimer’s Disease Diagnosis with a Meta-learning Paradigm von Sun, Xiaowen, Li, Jiahao, Yan, Guiying, Han, Renmin

    ISSN: 1367-4811, 1367-4811
    Veröffentlicht: England 28.10.2025
    Veröffentlicht in Bioinformatics (Oxford, England) (28.10.2025)
    “… While graph convolutional networks (GCNs) have emerged as popular tools for AD diagnosis due to their ability to handle structural information and fuse multi-modal features, deep learning approaches face significant challenges including …”
    Volltext
    Journal Article
  10. 10

    Alzheimer's disease classification using mutual information generated graph convolutional network for functional MRI von Fu, Yinghua, Jiang, Li, Detre, John, Wang, Ze

    ISSN: 1875-8908, 1875-8908
    Veröffentlicht: United States 01.08.2025
    Veröffentlicht in Journal of Alzheimer's disease (01.08.2025)
    “… ) through a connectome-based graph convolutional network (GCN).MethodsMI was calculated between the mean time series of each pair of brain regions, forming the connectome which was input to a multi-level connectome based GCN (MLC-GCN …”
    Weitere Angaben
    Journal Article
  11. 11

    Ensemble Manifold Regularized Multi-Modal Graph Convolutional Network for Cognitive Ability Prediction von Qu, Gang, Xiao, Li, Hu, Wenxing, Wang, Junqi, Zhang, Kun, Calhoun, Vince, Wang, Yu-Ping

    ISSN: 0018-9294, 1558-2531, 1558-2531
    Veröffentlicht: United States IEEE 01.12.2021
    Veröffentlicht in IEEE transactions on biomedical engineering (01.12.2021)
    “… : To take advantage of complementary information from multi-modal fMRI, we propose an interpretable multi-modal graph convolutional network (MGCN …”
    Volltext
    Journal Article
  12. 12

    Hierarchical Graph Convolutional Network Built by Multiscale Atlases for Brain Disorder Diagnosis Using Functional Connectivity von Liu, Mianxin, Zhang, Han, Shi, Feng, Shen, Dinggang

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.11.2024
    “… )." Accordingly, we propose a multiscale-atlases-based hierarchical graph convolutional network (MAHGCN …”
    Volltext
    Journal Article
  13. 13

    Multipattern graph convolutional network-based autism spectrum disorder identification von Zhou, Wenhao, Sun, Mingxiang, Xu, Xiaowen, Ruan, Yudi, Sun, Chenhao, Li, Weikai, Gao, Xin

    ISSN: 1460-2199, 1460-2199
    Veröffentlicht: United States 01.03.2024
    Veröffentlicht in Cerebral cortex (New York, N.Y. 1991) (01.03.2024)
    “… As a promising strategy, graph convolutional networks (GCN) provide an attractive approach to simultaneously extract FBN features and facilitate ASD identification, thus replacing the manual feature extraction from FBN …”
    Weitere Angaben
    Journal Article
  14. 14

    Augmented Multicenter Graph Convolutional Network for COVID-19 Diagnosis von Song, Xuegang, Li, Haimei, Gao, Wenwen, Chen, Yue, Wang, Tianfu, Ma, Guolin, Lei, Baiying

    ISSN: 1551-3203, 1941-0050
    Veröffentlicht: United States IEEE 01.09.2021
    Veröffentlicht in IEEE transactions on industrial informatics (01.09.2021)
    “… To address this issue, we propose an augmented multicenter graph convolutional network (AM-GCN) to diagnose COVID-19 with steps as follows …”
    Volltext
    Journal Article
  15. 15

    A Deep Learning Approach for Long-Term Traffic Flow Prediction With Multifactor Fusion Using Spatiotemporal Graph Convolutional Network von Qi, Xiaoyu, Mei, Gang, Tu, Jingzhi, Xi, Ning, Piccialli, Francesco

    ISSN: 1524-9050, 1558-0016
    Veröffentlicht: New York IEEE 01.08.2023
    “… on a spatiotemporal graph convolutional network for long-term traffic flow prediction with multiple factors …”
    Volltext
    Journal Article
  16. 16

    A novel unsupervised domain adaptation framework based on graph convolutional network and multi-level feature alignment for inter-subject ECG classification von He, Ziyang, Chen, Yufei, Yuan, Shuaiying, Zhao, Jianhui, Yuan, Zhiyong, Polat, Kemal, Alhudhaif, Adi, Alenezi, Fayadh, Hamid, Arwa

    ISSN: 0957-4174, 1873-6793
    Veröffentlicht: Elsevier Ltd 01.07.2023
    Veröffentlicht in Expert systems with applications (01.07.2023)
    “… ) module to extract spatio-temporal features of the samples. Then the graph convolutional network (GCN …”
    Volltext
    Journal Article
  17. 17

    Multi-scale temporal features extraction based graph convolutional network with attention for multivariate time series prediction von Chen, Yawen, Ding, Fengqian, Zhai, Linbo

    ISSN: 0957-4174, 1873-6793
    Veröffentlicht: New York Elsevier Ltd 15.08.2022
    Veröffentlicht in Expert systems with applications (15.08.2022)
    “… Modeling for multivariate time series have always been a meaningful subject. Multivariate time series forecasting is a fundamental problem attracting many researchers in various fields …”
    Volltext
    Journal Article
  18. 18

    Information cascade prediction of complex networks based on physics-informed graph convolutional network von Yu, Dingguo, Zhou, Yijie, Zhang, Suiyu, Li, Wenbing, Small, Michael, Shang, Ke-ke

    ISSN: 1367-2630, 1367-2630
    Veröffentlicht: Bristol IOP Publishing 01.01.2024
    Veröffentlicht in New journal of physics (01.01.2024)
    “… In this paper, we propose a novel framework called Physics-informed graph convolutional network (PiGCN …”
    Volltext
    Journal Article
  19. 19
  20. 20

    A Graph Convolutional Network Based on Univariate Neurodegeneration Biomarker for Alzheimer's Disease Diagnosis von Qu, Zongshuai, Yao, Tao, Liu, Xinghui, Wang, Gang

    ISSN: 2168-2372, 2168-2372
    Veröffentlicht: United States IEEE 01.01.2023
    “… This study proposed an efficient method of applying a graph convolutional network (GCN) on the early prediction of AD. Methods …”
    Volltext
    Journal Article