Suchergebnisse - "Graph Variational Autoencoder"

  • Treffer 1 - 18 von 18
Treffer weiter einschränken
  1. 1

    Graph variational autoencoder with affinity propagation for community-aware anomaly detection in attributed networks von Cao, Zhijie, Yang, Chengkun, Fan, Xiaoqing, Li, Lingjie, Lin, Qiuzhen, Li, Jianqiang, Ma, Lijia

    ISSN: 1568-4946
    Veröffentlicht: Elsevier B.V 01.01.2026
    Veröffentlicht in Applied soft computing (01.01.2026)
    “… Anomaly detection in attributed networks (ADAN) aims to identify abnormal nodes that exhibit unexpected link structures and attributes compared to the others …”
    Volltext
    Journal Article
  2. 2

    Objective-directed deep graph generative model for automatic and intelligent highway interchange design von Ma, Chenxiang, Xu, Chengcheng

    ISSN: 0926-5805
    Veröffentlicht: Elsevier B.V 01.03.2025
    Veröffentlicht in Automation in construction (01.03.2025)
    “… Highway interchanges have traditionally been designed through a time-consuming manual process. To enhance efficiency and effectiveness, this paper develops an …”
    Volltext
    Journal Article
  3. 3

    Adaptive Latent Graph Representation Learning for Image-Text Matching von Tian, Mengxiao, Wu, Xinxiao, Jia, Yunde

    ISSN: 1057-7149, 1941-0042, 1941-0042
    Veröffentlicht: United States IEEE 01.01.2023
    Veröffentlicht in IEEE transactions on image processing (01.01.2023)
    “… Image-text matching is a challenging task due to the modality gap. Many recent methods focus on modeling entity relationships to learn a common embedding space …”
    Volltext
    Journal Article
  4. 4

    High-Speed Link System Surrogate Modeling and Co-Optimization Based on Multimodal Machine Learning and GraphVAE von Wu, Xiao-Yang, Wang, Da-Wei, Zhao, Wen-Sheng

    ISSN: 0018-9480, 1557-9670
    Veröffentlicht: IEEE 2025
    “… With the continuous advancement of very-large-scale integra tion technology, high-speed interconnect systems are increasingly challenged by signal integrity …”
    Volltext
    Journal Article
  5. 5

    A Generative Framework for Predictive Modeling of Multiple Chronic Conditions Using Graph Variational Autoencoder and Bandit-Optimized Graph Neural Network von Rico, Julian Carvajal, Alaeddini, Adel, Faruqui, Syed Hasib Akhter, Fisher-Hoch, Susan P, Mccormick, Joseph B

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Veröffentlicht: United States IEEE 01.10.2025
    Veröffentlicht in IEEE journal of biomedical and health informatics (01.10.2025)
    “… Predicting the emergence of multiple chronic conditions (MCC) is crucial for early intervention and personalized healthcare, as MCC significantly impacts …”
    Volltext
    Journal Article
  6. 6

    MAGVA: An Open-Set Fault Diagnosis Model Based on Multi-Hop Attentive Graph Variational Autoencoder for Autonomous Vehicles von Fu, Rao, Bi, Yuanguo, Han, Guangjie, Zhang, Xiaoling, Liu, Li, Zhao, Liang, Hu, Bing

    ISSN: 1524-9050, 1558-0016
    Veröffentlicht: New York IEEE 01.12.2023
    “… To improve the reliability of autonomous vehicles, open-set fault diagnosis is indispensable to jointly detect known and unknown faults, in which unknown …”
    Volltext
    Journal Article
  7. 7
  8. 8

    The Deep Latent Position Block Model for Block Clustering and Latent Representation of Nodes in Networks von Boutin, Rémi, Latouche, Pierre, Bouveyron, Charles

    ISSN: 0960-3174, 1573-1375
    Veröffentlicht: New York Springer US 01.10.2025
    Veröffentlicht in Statistics and computing (01.10.2025)
    “… The current surge in data has led to a significant increase in the size of networks used to model relationships between different objects represented as nodes …”
    Volltext
    Journal Article
  9. 9

    Compressed graph representation for scalable molecular graph generation von Kwon, Youngchun, Lee, Dongseon, Choi, Youn-Suk, Shin, Kyoham, Kang, Seokho

    ISSN: 1758-2946, 1758-2946
    Veröffentlicht: Cham Springer International Publishing 23.09.2020
    Veröffentlicht in Journal of cheminformatics (23.09.2020)
    “… Recently, deep learning has been successfully applied to molecular graph generation. Nevertheless, mitigating the computational complexity, which increases …”
    Volltext
    Journal Article
  10. 10

    piRNA-disease association prediction based on multi-channel graph variational autoencoder von Sun, Wei, Guo, Chang, Wan, Jing, Ren, Han

    ISSN: 2376-5992, 2376-5992
    Veröffentlicht: United States PeerJ. Ltd 23.07.2024
    Veröffentlicht in PeerJ. Computer science (23.07.2024)
    “… Piwi-interacting RNA (piRNA) is a type of non-coding small RNA that is highly expressed in mammalian testis. PiRNA has been implicated in various human …”
    Volltext
    Journal Article
  11. 11

    Malware detection framework based on graph variational autoencoder extracted embeddings from API-call graphs von Gunduz, Hakan

    ISSN: 2376-5992, 2376-5992
    Veröffentlicht: United States PeerJ. Ltd 18.05.2022
    Veröffentlicht in PeerJ. Computer science (18.05.2022)
    “… Malware harms the confidentiality and integrity of the information that causes material and moral damages to institutions or individuals. This study proposed a …”
    Volltext
    Journal Article
  12. 12

    Deep Latent-Variable Models for Controllable Molecule Generation von Du, Yuanqi, Wang, Yinkai, Alam, Fardina, Lu, Yuanjie, Guo, Xiaojie, Zhao, Liang, Shehu, Amarda

    Veröffentlicht: IEEE 09.12.2021
    “… Representation learning via deep generative models is opening a new avenue for small molecule generation in silico. Linking chemical and biological space …”
    Volltext
    Tagungsbericht
  13. 13

    Latent Space Neural Architecture Search via LambdaNDCGloss-Based Listwise Ranker von Xiao, Songyi, Zhao, Bo, Liu, Derong

    Veröffentlicht: IEEE 20.10.2023
    “… The rapid development of neural architecture search (NAS) promotes the research of efficient evaluation of candidate architectures. However, as one of highly …”
    Volltext
    Tagungsbericht
  14. 14

    BiAtt-GVAE: Molecular Design for Specific Target via Graph Variational Autoencoder Based on Bi-Channel Interactive Attention Network von Ma, Mei, Lei, Xiujuan

    ISSN: 2998-4165, 2998-4165
    Veröffentlicht: United States IEEE 01.09.2025
    “… Designing bioactive molecules with desired properties for specific targets is a longstanding challenge in drug design. We introduce a model called BiAtt-GVAE, …”
    Volltext
    Journal Article
  15. 15

    MoleculeXpert: A Novel Architecture for Expert-Level Molecule Analysis of HIV Inhibition von Salim, Ashik P, Naseer, Raed, Thottunkal, Rajeev, S, Vishnu Prasad, Varghese, Jina

    Veröffentlicht: IEEE 11.04.2024
    “… The global HIV/AIDS pandemic persists as a formidable health challenge, demanding innovative solutions for accelerated drug discovery. In response to this …”
    Volltext
    Tagungsbericht
  16. 16

    A deep learning algorithm for predicting protein-protein interactions with nonnegative latent factorization von Wang, Liwei, Hu, Lun

    Veröffentlicht: IEEE 18.12.2021
    “… Protein-protein interaction (PPI) networks play an essential role in the study of proteomics. Given the fact that known PPI data are extremely incomplete, …”
    Volltext
    Tagungsbericht
  17. 17

    FastGAE: Scalable graph autoencoders with stochastic subgraph decoding von Salha, Guillaume, Hennequin, Romain, Remy, Jean-Baptiste, Moussallam, Manuel, Vazirgiannis, Michalis

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Veröffentlicht: United States Elsevier Ltd 01.10.2021
    Veröffentlicht in Neural networks (01.10.2021)
    “… Graph autoencoders (AE) and variational autoencoders (VAE) are powerful node embedding methods, but suffer from scalability issues. In this paper, we introduce …”
    Volltext
    Journal Article
  18. 18

    Multiresolution equivariant graph variational autoencoder von Hy, Truong Son, Kondor, Risi

    ISSN: 2632-2153, 2632-2153
    Veröffentlicht: Bristol IOP Publishing 01.03.2023
    Veröffentlicht in Machine learning: science and technology (01.03.2023)
    “… In this paper, we propose Multiresolution Equivariant Graph Variational Autoencoders (MGVAE), the first hierarchical generative model to learn and generate …”
    Volltext
    Journal Article