Výsledky vyhľadávania - "Graph Convolutional Variational Autoencoders"
Alternativne vyhľadávanie:
- "Graph Convolutional Variational Autoencoders" »
-
1
Subject Representation Learning from EEG using Graph Convolutional Variational Autoencoders
ISSN: 2379-190XVydavateľské údaje: IEEE 06.04.2025Vydané v Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) (06.04.2025)“…We propose GC-VASE, a graph convolutional-based variational autoencoder that leverages contrastive learning for subject representation learning from EEG data…”
Získať plný text
Konferenčný príspevok.. -
2
Scalable Graph Convolutional Variational Autoencoders
Vydavateľské údaje: IEEE 19.05.2021Vydané v 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI) (19.05.2021)“…Autoencoders are widely used for self-supervised representation learning. Variational autoencoders (VAEs), a special type of autoencoders, are proven to be…”
Získať plný text
Konferenčný príspevok.. -
3
DiffuScope: A diffusion-regularized autoencoder for spatial transcriptomic clustering
ISSN: 1476-9271, 1476-928X, 1476-928XVydavateľské údaje: England Elsevier Ltd 01.02.2026Vydané v Computational biology and chemistry (01.02.2026)“… To address this challenge, we propose DiffuScope, a clustering framework based on Graph Convolutional Variational Autoencoders (GC-VAE…”
Získať plný text
Journal Article -
4
Graph variational autoencoder with affinity propagation for community-aware anomaly detection in attributed networks
ISSN: 1568-4946Vydavateľské údaje: Elsevier B.V 01.01.2026Vydané v Applied soft computing (01.01.2026)“…) for community-aware ADAN. GVE-AP first employs a graph convolutional variational autoencoder to learn node embeddings from attributed networks…”
Získať plný text
Journal Article -
5
Hierarchical Graph-Convolutional Variational AutoEncoding for Generative Modelling of Human Motion
ISSN: 2331-8422Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 06.06.2022Vydané v arXiv.org (06.06.2022)“… We show this Hierarchical Graph-convolutional Variational Autoencoder (HG-VAE) to be capable of generating coherent actions, detecting out-of-distribution…”
Získať plný text
Paper