Suchergebnisse - "GENETIC algorithms"

  1. 1

    Intelligent Particle Filter and Its Application to Fault Detection of Nonlinear System von Yin, Shen, zhu, xiangping

    ISSN: 0278-0046, 1557-9948
    Veröffentlicht: New York IEEE 01.06.2015
    Veröffentlicht in IEEE transactions on industrial electronics (1982) (01.06.2015)
    “… The particle filter (PF) provides a kind of novel technique for estimating the hidden states of the nonlinear and/or non-Gaussian systems. However, the general …”
    Volltext
    Journal Article
  2. 2

    Coordinated planning method of load and storage interaction between source and network based on chaotic optimization algorithm von Meng, Fanlin, Yan, Hui, Zhao, Chao

    ISSN: 1742-6588, 1742-6596
    Veröffentlicht: Bristol IOP Publishing 01.06.2025
    Veröffentlicht in Journal of physics. Conference series (01.06.2025)
    “… A distribution network collaborative optimization method is proposed based on an improved genetic algorithm and integrated source network load storage, aiming …”
    Volltext
    Journal Article
  3. 3

    An integrated scheduling genetic algorithm based on process constraint matrix and family definition coding von Qian, Chao, Zhang, Jianxin

    ISSN: 1742-6588, 1742-6596
    Veröffentlicht: Bristol IOP Publishing 01.05.2025
    Veröffentlicht in Journal of physics. Conference series (01.05.2025)
    “… To address the complex product-integrated scheduling problem, an improved genetic algorithm based on process constraint matrix and family definition is …”
    Volltext
    Journal Article
  4. 4

    Equilibrium optimizer: A novel optimization algorithm von Faramarzi, Afshin, Heidarinejad, Mohammad, Stephens, Brent, Mirjalili, Seyedali

    ISSN: 0950-7051, 1872-7409
    Veröffentlicht: Amsterdam Elsevier B.V 05.03.2020
    Veröffentlicht in Knowledge-based systems (05.03.2020)
    “… This paper presents a novel, optimization algorithm called Equilibrium Optimizer (EO), inspired by control volume mass balance models used to estimate both …”
    Volltext
    Journal Article
  5. 5

    A review on genetic algorithm: past, present, and future von Katoch, Sourabh, Chauhan, Sumit Singh, Kumar, Vijay

    ISSN: 1380-7501, 1573-7721
    Veröffentlicht: New York Springer US 01.02.2021
    Veröffentlicht in Multimedia tools and applications (01.02.2021)
    “… In this paper, the analysis of recent advances in genetic algorithms is discussed. The genetic algorithms of great interest in research community are selected …”
    Volltext
    Journal Article
  6. 6

    Evolving Deep Convolutional Neural Networks for Image Classification von Sun, Yanan, Xue, Bing, Zhang, Mengjie, Yen, Gary G.

    ISSN: 1089-778X, 1941-0026
    Veröffentlicht: New York IEEE 01.04.2020
    Veröffentlicht in IEEE transactions on evolutionary computation (01.04.2020)
    “… Evolutionary paradigms have been successfully applied to neural network designs for two decades. Unfortunately, these methods cannot scale well to the modern …”
    Volltext
    Journal Article
  7. 7

    A novel genetic LSTM model for wind power forecast von Shahid, Farah, Zameer, Aneela, Muneeb, Muhammad

    ISSN: 0360-5442, 1873-6785
    Veröffentlicht: Oxford Elsevier Ltd 15.05.2021
    Veröffentlicht in Energy (Oxford) (15.05.2021)
    “… Variations of produced power in windmills may influence the appropriate integration in power-driven grids which may disrupt the balance between electricity …”
    Volltext
    Journal Article
  8. 8

    Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches von Bouktif, Salah, Fiaz, Ali, Ouni, Ali, Serhani, Mohamed

    ISSN: 1996-1073, 1996-1073
    Veröffentlicht: Basel MDPI AG 2018
    Veröffentlicht in Energies (Basel) (2018)
    “… Background: With the development of smart grids, accurate electric load forecasting has become increasingly important as it can help power companies in better …”
    Volltext
    Journal Article
  9. 9

    Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm von Lü, Xueqin, Wu, Yinbo, Lian, Jie, Zhang, Yangyang, Chen, Chao, Wang, Peisong, Meng, Lingzheng

    ISSN: 0196-8904, 1879-2227
    Veröffentlicht: Oxford Elsevier Ltd 01.02.2020
    Veröffentlicht in Energy conversion and management (01.02.2020)
    “… •Summarized the topological structure types of fuel cell hybrid vehicles.•Summarize the optimal parameters in the energy management strategy.•Expounded several …”
    Volltext
    Journal Article
  10. 10

    Prediction of Risk Delay in Construction Projects Using a Hybrid Artificial Intelligence Model von Yaseen, Zaher Mundher, Ali, Zainab Hasan, Salih, Sinan Q., Al-Ansari, Nadhir

    ISSN: 2071-1050, 2071-1050
    Veröffentlicht: Basel MDPI AG 2020
    Veröffentlicht in Sustainability (2020)
    “… Project delays are the major problems tackled by the construction sector owing to the associated complexity and uncertainty in the construction activities …”
    Volltext
    Journal Article
  11. 11

    A Novel Active Equalization Method for Series-Connected Battery Packs Based on Clustering Analysis With Genetic Algorithm von Jinlei, Sun, Wei, Liu, Chuanyu, Tang, Tianru, Wang, Tao, Jiang, Yong, Tang

    ISSN: 0885-8993, 1941-0107
    Veröffentlicht: New York IEEE 01.07.2021
    Veröffentlicht in IEEE transactions on power electronics (01.07.2021)
    “… Battery pack performance is the main concern for electric vehicles and energy storage systems. However, charge imbalance is inevitable due to inconsistent …”
    Volltext
    Journal Article
  12. 12

    Completely Automated CNN Architecture Design Based on Blocks von Sun, Yanan, Xue, Bing, Zhang, Mengjie, Yen, Gary G.

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.04.2020
    “… The performance of convolutional neural networks (CNNs) highly relies on their architectures. In order to design a CNN with promising performance, extensive …”
    Volltext
    Journal Article
  13. 13

    Adaptive crossover operator based multi-objective binary genetic algorithm for feature selection in classification von Xue, Yu, Zhu, Haokai, Liang, Jiayu, Słowik, Adam

    ISSN: 0950-7051, 1872-7409
    Veröffentlicht: Amsterdam Elsevier B.V 05.09.2021
    Veröffentlicht in Knowledge-based systems (05.09.2021)
    “… Feature selection is a key pre-processing technique for classification which aims at removing irrelevant or redundant features from a given dataset. Generally …”
    Volltext
    Journal Article
  14. 14

    A Stochastic Multi-Objective Framework for Optimal Scheduling of Energy Storage Systems in Microgrids von Farzin, Hossein, Fotuhi-Firuzabad, Mahmud, Moeini-Aghtaie, Moein

    ISSN: 1949-3053, 1949-3061
    Veröffentlicht: Piscataway IEEE 01.01.2017
    Veröffentlicht in IEEE transactions on smart grid (01.01.2017)
    “… This paper presents a stochastic framework for day-ahead scheduling of microgrid energy storage systems in the context of multi-objective (MO) optimization …”
    Volltext
    Journal Article
  15. 15

    Aspect-based sentiment analysis using adaptive aspect-based lexicons von Mowlaei, Mohammad Erfan, Saniee Abadeh, Mohammad, Keshavarz, Hamidreza

    ISSN: 0957-4174, 1873-6793
    Veröffentlicht: New York Elsevier Ltd 15.06.2020
    Veröffentlicht in Expert systems with applications (15.06.2020)
    “… •A combination of dynamic and static lexicons outperforms isolated use of each type.•In lexicon generation using GA, frequent terms tend to have the most …”
    Volltext
    Journal Article
  16. 16

    A new efficient hybrid algorithm for large scale multiple traveling salesman problems von Jiang, Chao, Wan, Zhongping, Peng, Zhenhua

    ISSN: 0957-4174, 1873-6793
    Veröffentlicht: New York Elsevier Ltd 01.01.2020
    Veröffentlicht in Expert systems with applications (01.01.2020)
    “… •A new hybrid algorithm AC-PGA is designed for solving large scale MTSPs.•AC-PGA has better performance than some existing algorithms.•AC-PGA has weak …”
    Volltext
    Journal Article
  17. 17

    Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture von Listou Ellefsen, André, Bjørlykhaug, Emil, Æsøy, Vilmar, Ushakov, Sergey, Zhang, Houxiang

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Barking Elsevier Ltd 01.03.2019
    Veröffentlicht in Reliability engineering & system safety (01.03.2019)
    “… •State-of-the-art results on the C-MAPSS dataset.•Genetic algorithm effectively tunes hyper-parameters in deep architectures.•Unsupervised pre-training …”
    Volltext
    Journal Article
  18. 18

    Evolutionary algorithms and their applications to engineering problems von Slowik, Adam, Kwasnicka, Halina

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.08.2020
    Veröffentlicht in Neural computing & applications (01.08.2020)
    “… The main focus of this paper is on the family of evolutionary algorithms and their real-life applications. We present the following algorithms: genetic …”
    Volltext
    Journal Article
  19. 19

    Potential for optimization of energy consumption and costs in saffron production in central Iran through data envelopment analysis and multi‐objective genetic algorithm von Saeidi, Elham, Dehkordi, Amin Lotfalian, Nabavi‐Pelesaraei, Ashkan

    ISSN: 1944-7442, 1944-7450
    Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.09.2022
    Veröffentlicht in Environmental progress & sustainable energy (01.09.2022)
    “… Technical management of agricultural units plays an important role in increasing the yield, energy efficiency, and decreasing the production costs. Based on …”
    Volltext
    Journal Article
  20. 20

    Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification von Sun, Yanan, Xue, Bing, Zhang, Mengjie, Yen, Gary G., Lv, Jiancheng

    ISSN: 2168-2267, 2168-2275, 2168-2275
    Veröffentlicht: United States IEEE 01.09.2020
    Veröffentlicht in IEEE transactions on cybernetics (01.09.2020)
    “… Convolutional neural networks (CNNs) have gained remarkable success on many image classification tasks in recent years. However, the performance of CNNs highly …”
    Volltext
    Journal Article