Suchergebnisse - "First order optimization algorithms"

  • Treffer 1 - 8 von 8
Treffer weiter einschränken
  1. 1

    Tradeoffs Between Convergence Rate and Noise Amplification for Momentum-Based Accelerated Optimization Algorithms von Mohammadi, Hesameddin, Razaviyayn, Meisam, Jovanovic, Mihailo R.

    ISSN: 0018-9286, 1558-2523
    Veröffentlicht: New York IEEE 01.02.2025
    Veröffentlicht in IEEE transactions on automatic control (01.02.2025)
    “… In this article, we study momentum-based first-order optimization algorithms in which the iterations utilize information from the two previous steps and are subject to an additive white noise …”
    Volltext
    Journal Article
  2. 2

    Noise amplifiation of momentum-based optimization algorithms von Mohammadi, Hesameddin, Razaviyayn, Meisam, Jovanovic, Mihailo R.

    ISSN: 2378-5861
    Veröffentlicht: American Automatic Control Council 31.05.2023
    Veröffentlicht in Proceedings of the American Control Conference (31.05.2023)
    “… We study momentum-based first-order optimization algorithms in which the iterations utilize information from the two previous steps and are subject to additive white noise …”
    Volltext
    Tagungsbericht
  3. 3

    Theory and Methods for Stochastic, Accelerated, and Distributed Optimization von Can, Bugra

    ISBN: 9798802717950
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2022
    “… This thesis consists of two parts.Part I (Chapters 1–3) concerns momentum-based first-order optimization algorithms for stochastic optimization where we have only access to stochastic (noisy …”
    Volltext
    Dissertation
  4. 4

    Tradeoffs between convergence rate and noise amplification for momentum-based accelerated optimization algorithms von Mohammadi, Hesameddin, Razaviyayn, Meisam, Jovanović, Mihailo R

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 19.06.2024
    Veröffentlicht in arXiv.org (19.06.2024)
    “… We study momentum-based first-order optimization algorithms in which the iterations utilize information from the two previous steps and are subject to an additive white noise …”
    Volltext
    Paper
  5. 5

    Robust estimation and shrinkage in ultrahigh dimensional expectile regression with heavy tails and variance heterogeneity von Zhao, Jun, Yan, Guan’ao, Zhang, Yi

    ISSN: 0932-5026, 1613-9798
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2022
    Veröffentlicht in Statistical papers (Berlin, Germany) (01.02.2022)
    “… High-dimensional data subject to heavy-tailed phenomena and heterogeneity are commonly encountered in various scientific fields and bring new challenges to the classical statistical methods …”
    Volltext
    Journal Article
  6. 6
  7. 7

    Bounding the expected run-time of nonconvex optimization with early stopping von Flynn, Thomas, Yu, Kwang Min, Malik, Abid, D'Imperio, Nicolas, Yoo, Shinjae

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 22.07.2020
    Veröffentlicht in arXiv.org (22.07.2020)
    “… We develop the approach in the general setting of a first-order optimization algorithm, with possibly …”
    Volltext
    Paper
  8. 8

    Robust Estimation and Shrinkage in Ultrahigh Dimensional Expectile Regression with Heavy Tails and Variance Heterogeneity von Zhao, Jun, Guan'ao Yan, Zhang, Yi

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 01.10.2019
    Veröffentlicht in arXiv.org (01.10.2019)
    “… High-dimensional data subject to heavy-tailed phenomena and heterogeneity are commonly encountered in various scientific fields and bring new challenges to the classical statistical methods …”
    Volltext
    Paper