Suchergebnisse - "First order algorithms"
-
1
Randomized first order algorithms with applications to ℓ 1-minimization
ISSN: 0025-5610, 1436-4646Veröffentlicht: 01.12.2013Veröffentlicht in Mathematical programming (01.12.2013)Volltext
Journal Article -
2
Tradeoffs Between Convergence Rate and Noise Amplification for Momentum-Based Accelerated Optimization Algorithms
ISSN: 0018-9286, 1558-2523Veröffentlicht: New York IEEE 01.02.2025Veröffentlicht in IEEE transactions on automatic control (01.02.2025)“… In this article, we study momentum-based first-order optimization algorithms in which the iterations utilize information from the two previous steps and are subject to an additive white noise …”
Volltext
Journal Article -
3
S-NEAR-DGD: A Flexible Distributed Stochastic Gradient Method for Inexact Communication
ISSN: 0018-9286, 1558-2523Veröffentlicht: New York IEEE 01.02.2023Veröffentlicht in IEEE transactions on automatic control (01.02.2023)“… Our method is based on a class of flexible, distributed first-order algorithms that allow for the tradeoff of computation and communication to best accommodate the application setting …”
Volltext
Journal Article -
4
Robustness of First- and Second-Order Consensus Algorithms for a Noisy Scale-Free Small-World Koch Network
ISSN: 1063-6536, 1558-0865Veröffentlicht: New York IEEE 01.01.2017Veröffentlicht in IEEE transactions on control systems technology (01.01.2017)“… We focus on three cases of consensus schemes: (1) first-order leaderless algorithm; (2) first-order algorithm with a single leader; and (3 …”
Volltext
Journal Article -
5
Finding Second-Order Stationary Points in Constrained Minimization: A Feasible Direction Approach
ISSN: 0022-3239, 1573-2878Veröffentlicht: New York Springer US 01.08.2020Veröffentlicht in Journal of optimization theory and applications (01.08.2020)“… The first-order step is a generic closed map algorithm, which can be chosen from a variety of first-order algorithms, making it adjustable to the given problem …”
Volltext
Journal Article -
6
Trilevel and multilevel optimization using monotone operator theory
ISSN: 1432-2994, 1432-5217Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2024Veröffentlicht in Mathematical methods of operations research (Heidelberg, Germany) (01.04.2024)“… Based on fixed-point theory and related arguments, we present a natural first-order algorithm and analyze its convergence and rates of convergence in several regimes …”
Volltext
Journal Article -
7
Optimal First-Order Algorithms as a Function of Inequalities
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 21.03.2024Veröffentlicht in arXiv.org (21.03.2024)“… Specifically, we restrict convergence analyses of algorithms to use a prespecified subset of inequalities, rather than utilizing all true inequalities, and find the optimal algorithm subject to this restriction …”
Volltext
Paper -
8
First-Order Fast Algorithm for Structurally Optimal Multi-Group Multicast Beamforming in Large-Scale Systems
ISSN: 2379-190XVeröffentlicht: IEEE 06.06.2021Veröffentlicht in Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) (06.06.2021)“… Based on the optimal multicast beamforming structure, we propose a fast first-order algorithm to obtain the beamforming solution …”
Volltext
Tagungsbericht -
9
Trilevel and Multilevel Optimization using Monotone Operator Theory
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 19.10.2023Veröffentlicht in arXiv.org (19.10.2023)“… ~Based on fixed-point theory and related arguments, we present a natural first-order algorithm and analyze its convergence and rates of convergence in several regimes …”
Volltext
Paper -
10
A likelihood-based approach for multivariate categorical response regression in high dimensions
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 23.01.2022Veröffentlicht in arXiv.org (23.01.2022)“… both the marginal distributions and log odds ratios. To compute our estimator, we propose an efficient first order algorithm which we extend to settings where some subjects have only one response variable measured, i.e …”
Volltext
Paper -
11
Aggregating regular norms
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 11.02.2024Veröffentlicht in arXiv.org (11.02.2024)“… ) high-dimensional convex geometry and probability in Banach spaces [0.9.12.13.15], and in 2) design of proximal first-order algorithms for large-scale convex optimization with dimension-independent, or nearly so, complexity …”
Volltext
Paper -
12
Robustly Stable Accelerated Momentum Methods With A Near-Optimal L2 Gain and \(H_\infty\) Performance
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 20.10.2023Veröffentlicht in arXiv.org (20.10.2023)“… We study the trade-offs between the convergence rate and robustness to gradient errors when designing the parameters of a first-order algorithm …”
Volltext
Paper -
13
Optimal Sparse \(H_\infty\) Controller Design for Networked Control Systems
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 01.11.2024Veröffentlicht in arXiv.org (01.11.2024)“… However, the design of optimal sparse \(H_\infty\) controllers remains an open and challenging problem due to its non-convexity, and we cannot design a first-order algorithm to analyze since we lack an analytical expression for a given controller …”
Volltext
Paper -
14
S-NEAR-DGD: A Flexible Distributed Stochastic Gradient Method for Inexact Communication
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 30.01.2021Veröffentlicht in arXiv.org (30.01.2021)“… Our method is based on a class of flexible, distributed first order algorithms that allow for the trade-off of computation and communication to best accommodate the application setting …”
Volltext
Paper -
15
Entropic Risk-Averse Generalized Momentum Methods
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 26.04.2022Veröffentlicht in arXiv.org (26.04.2022)“… In the context of first-order algorithms subject to random gradient noise, we study the trade-offs between the convergence rate …”
Volltext
Paper -
16
Fast First-Order Methods for Monotone Strongly DR-Submodular Maximization
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 27.05.2022Veröffentlicht in arXiv.org (27.05.2022)“… ) property, which implies that they are concave along non-negative directions. Existing works have studied monotone continuous DR-submodular maximization subject …”
Volltext
Paper -
17
COCO Denoiser: Using Co-Coercivity for Variance Reduction in Stochastic Convex Optimization
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 07.09.2021Veröffentlicht in arXiv.org (07.09.2021)“… Our method, named COCO denoiser, is the joint maximum likelihood estimator of multiple function gradients from their noisy observations, subject to co-coercivity constraints …”
Volltext
Paper -
18
On the effect of perturbations in first-order optimization methods with inertia and Hessian driven damping
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 17.03.2022Veröffentlicht in arXiv.org (17.03.2022)“… Second-order continuous-time dissipative dynamical systems with viscous and Hessian driven damping have inspired effective first-order algorithms for solving convex optimization problems …”
Volltext
Paper -
19
Joint Fronthaul and Multicast Beamforming for Ultra-Dense C-RANs
Veröffentlicht: IEEE 28.07.2021Veröffentlicht in 2021 IEEE/CIC International Conference on Communications in China (ICCC) (28.07.2021)“… algorithm with low computational complexity is developed to find the optimal solution. Numerical results demonstrate that the proposed first-order algorithm can achieve …”
Volltext
Tagungsbericht -
20
Primal-Dual Methods for Saddle-Point Problems with Applications to Decentralized Constrained Convex Optimization
ISBN: 9798535592947Veröffentlicht: ProQuest Dissertations & Theses 01.01.2020“… Saddle-point (SP) problems form an important class of computational problems with the aim of minimizing a function over one variable while maximizing over the …”
Volltext
Dissertation

