Suchergebnisse - "Encoder-Decoder ConvLSTM"

  • Treffer 1 - 13 von 13
Treffer weiter einschränken
  1. 1

    An Optimized Model With Encoder-Decoder ConvLSTM for Global Ionospheric Forecasting von Wang, Cheng, Xue, Kaiyu, Shi, Chuang

    ISSN: 1545-598X, 1558-0571
    Veröffentlicht: Piscataway IEEE 2025
    Veröffentlicht in IEEE geoscience and remote sensing letters (2025)
    “… The encoder-decoder ConvLSTM-B model achieves the best performance, lowering RMSE by 2.031%-8.547% compared to the ConvLSTM-A model …”
    Volltext
    Journal Article
  2. 2

    Advancing spatiotemporal forecasts of CO2 plume migration using deep learning networks with transfer learning and interpretation analysis von Fan, Ming, Wang, Hongsheng, Zhang, Jing, Hosseini, Seyyed A., Lu, Dan

    ISSN: 1750-5836
    Veröffentlicht: United States Elsevier Ltd 01.02.2024
    Veröffentlicht in International journal of greenhouse gas control (01.02.2024)
    “… Accurate and timely forecasts of CO2 plume distribution throughout the injection and post-injection phases are crucial for detecting plume migration, assessing …”
    Volltext
    Journal Article
  3. 3

    Forecasting Stock Market Using Machine Learning Approach Encoder-Decoder ConvLSTM von Iqbal, Khurum, Hassan, Ali, Hassan, Syed Shah Mir Ul, Iqbal, Shuaib, Aslam, Faheem, Mughal, Khurrum S

    Veröffentlicht: IEEE 01.12.2021
    “… The goal of this study is to create a hybrid Deep Learning model (Encoder-Decoder ConvLSTM …”
    Volltext
    Tagungsbericht
  4. 4

    PDED-ConvLSTM: Pyramid Dilated Deeper Encoder–Decoder Convolutional LSTM for Arctic Sea Ice Concentration Prediction von Zhang, Deyu, Wang, Changying, Huang, Baoxiang, Ren, Jing, Zhao, Junli, Hou, Guojia

    ISSN: 2076-3417, 2076-3417
    Veröffentlicht: Basel MDPI AG 01.04.2024
    Veröffentlicht in Applied sciences (01.04.2024)
    “… Arctic sea ice concentration plays a key role in the global ecosystem. However, accurate prediction of Arctic sea ice concentration remains a challenging task …”
    Volltext
    Journal Article
  5. 5

    A multi-embedding neural model for incident video retrieval von Chiang, Ting-Hui, Tseng, Yi-Chun, Tseng, Yu-Chee

    ISSN: 0031-3203, 1873-5142
    Veröffentlicht: Elsevier Ltd 01.10.2022
    Veröffentlicht in Pattern recognition (01.10.2022)
    “… We propose an encoder-decoder ConvLSTM model that explores multiple embeddings of a video to facilitate comparison of similarity between a pair of videos …”
    Volltext
    Journal Article
  6. 6

    An advanced spatio-temporal convolutional recurrent neural network for storm surge predictions von Adeli, Ehsan, Sun, Luning, Wang, Jianxun, Taflanidis, Alexandros A.

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.09.2023
    Veröffentlicht in Neural computing & applications (01.09.2023)
    “… In this research paper, we study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history, …”
    Volltext
    Journal Article
  7. 7

    Multi-Scale Attention and Encoder-Decoder Network for Video Saliency Object Detection von Bi, Hongbo, Zhu, Huihui, Yang, Lina, Wu, Ranwan

    ISSN: 1054-6618, 1555-6212
    Veröffentlicht: Moscow Pleiades Publishing 01.06.2022
    Veröffentlicht in Pattern recognition and image analysis (01.06.2022)
    “… — In recent years, video saliency object detection has received more and more attention, and many excellent algorithms have been proposed. In the paper, we …”
    Volltext
    Journal Article
  8. 8

    Multivariate Multi-Step Agrometeorological Forecast Model for Rapid Spray von Shi, Guobin, Wang, Chun

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2021
    Veröffentlicht in IEEE access (2021)
    “… In this paper, a Convolutional-LSTM encoder-decoder (ConvLSTM-AE) hybrid model for multivariate output and multi-step prediction with short time intervals is proposed to predict these three agrometeorological variables in advance …”
    Volltext
    Journal Article
  9. 9

    An Unsupervised Framework for Anomaly Detection in a Water Treatment System von Macas, Mayra, Wu, Chunming

    Veröffentlicht: IEEE 01.12.2019
    “… Current Cyber-Physical Systems (CPSs) are sophisticated, complex, and equipped with networked sensors and actuators. As such, they have become further exposed …”
    Volltext
    Tagungsbericht
  10. 10

    Deep Learning and Kinect Skeleton-based Approach for Fall Prediction of Elderly Physically Disabled von Nouisser, Raoudha, Kammoun Jarraya, Salma, Hammami, Mohamed

    ISSN: 2161-5330
    Veröffentlicht: IEEE 01.12.2022
    “… Within our approach, we propose a novel implementation of Encoder-Decoder ConvLSTM (Convolutional Long Short-Term Memory …”
    Volltext
    Tagungsbericht
  11. 11

    Multi-Pollutant Ground-level Air Pollution Prediction through Deep MeteoGCN-ConvLSTM von Muthukumar, Pratyush, Pathak, Shaurya, Nagrecha, Kabir, Hosseini, Hirad, Comer, Dawn, Amini, Navid, Holm, Jeanne, Pourhomayoun, Mohammad

    ISSN: 2769-5654
    Veröffentlicht: IEEE 01.12.2022
    “… We propose a novel sequential encoder-decoder ConvLSTM architecture capable of predicting hourly CO, NO, NO_{2}, O_{3} , and PM …”
    Volltext
    Tagungsbericht
  12. 12

    A Multi-Embedding Architecture for Incident Video Retrieval von Tseng, Yi-Chun

    ISBN: 9798383634660
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2020
    “… We propose an encoder-decoder ConvLSTM model that explores multiple embeddings of a video to facilitate comparing the similarity between a pair of videos …”
    Volltext
    Dissertation
  13. 13

    An advanced spatio-temporal convolutional recurrent neural network for storm surge predictions von Adeli, Ehsan, Sun, Luning, Wang, Jianxun, Taflanidis, Alexandros A

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 18.04.2022
    Veröffentlicht in arXiv.org (18.04.2022)
    “… In this research paper, we study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history, …”
    Volltext
    Paper