Suchergebnisse - "Duan, Chiming"
-
1
LLMeLog: An Approach for Anomaly Detection based on LLM-enriched Log Events
ISSN: 2332-6549Veröffentlicht: IEEE 28.10.2024Veröffentlicht in Proceedings - International Symposium on Software Reliability Engineering (28.10.2024)“… Log-based anomaly detection is an essential task in maintaining software reliability. Existing log-based anomaly detection approaches often consist of three …”
Volltext
Tagungsbericht -
2
Weakly-Supervised Log-Based Anomaly Detection with Inexact Labels via Multi-Instance Learning
ISSN: 1558-1225Veröffentlicht: IEEE 26.04.2025Veröffentlicht in Proceedings / International Conference on Software Engineering (26.04.2025)“… Log-based anomaly detection is essential for maintaining software availability. However, existing log-based anomaly detection approaches heavily rely on …”
Volltext
Tagungsbericht -
3
CSLParser: A Collaborative Framework Using Small and Large Language Models for Log Parsing
ISSN: 2332-6549Veröffentlicht: IEEE 21.10.2025Veröffentlicht in Proceedings - International Symposium on Software Reliability Engineering (21.10.2025)“… Log parsing is a prerequisite for log analysis. Recently, large language models (LLMs) have demonstrated high accuracy in log parsing. However, their frequent …”
Volltext
Tagungsbericht -
4
AcLog: An Approach to Detecting Anomalies from System Logs with Active Learning
ISSN: 2836-3868Veröffentlicht: IEEE 01.07.2023Veröffentlicht in Proceedings (IEEE International Conference on Web Services. Online) (01.07.2023)“… Log-based anomaly detection is an essential aspect of maintaining software reliability, particularly in the context of microservice systems. However, existing …”
Volltext
Tagungsbericht -
5
LogCAE: An Approach for Log-based Anomaly Detection with Active Learning and Contrastive Learning
ISSN: 2332-6549Veröffentlicht: IEEE 28.10.2024Veröffentlicht in Proceedings - International Symposium on Software Reliability Engineering (28.10.2024)“… Log-based anomaly detection plays a crucial role in maintaining the reliability of software systems. Unsupervised models are more suitable for real-world usage …”
Volltext
Tagungsbericht -
6
Famos: Fault Diagnosis for Microservice Systems Through Effective Multi-Modal Data Fusion
ISSN: 1558-1225Veröffentlicht: IEEE 26.04.2025Veröffentlicht in Proceedings / International Conference on Software Engineering (26.04.2025)“… Accurately diagnosing the fault that causes the failure is crucial for maintaining the reliability of a microservice system after a failure occurs. Mainstream …”
Volltext
Tagungsbericht -
7
AFALog: A General Augmentation Framework for Log-based Anomaly Detection with Active Learning
ISSN: 2332-6549Veröffentlicht: IEEE 09.10.2023Veröffentlicht in Proceedings - International Symposium on Software Reliability Engineering (09.10.2023)“… Log-based anomaly detection is becoming more and more important for maintaining the availability of modern microservice systems. Existing …”
Volltext
Tagungsbericht -
8
EagerLog: Active Learning Enhanced Retrieval Augmented Generation for Log-based Anomaly Detection
ISSN: 2379-190XVeröffentlicht: IEEE 06.04.2025Veröffentlicht in Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) (06.04.2025)“… Logs record essential information about system operations and serve as a critical source for anomaly detection, which has generated growing research interest …”
Volltext
Tagungsbericht