Výsledky vyhledávání - "Deep learning in robotics and automation"

  1. 1

    Safe Control With Learned Certificates: A Survey of Neural Lyapunov, Barrier, and Contraction Methods for Robotics and Control Autor Dawson, Charles, Gao, Sicun, Fan, Chuchu

    ISSN: 1552-3098, 1941-0468
    Vydáno: New York IEEE 01.06.2023
    Vydáno v IEEE transactions on robotics (01.06.2023)
    “…Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at…”
    Získat plný text
    Journal Article
  2. 2

    Deep Learning Approaches to Grasp Synthesis: A Review Autor Newbury, Rhys, Gu, Morris, Chumbley, Lachlan, Mousavian, Arsalan, Eppner, Clemens, Leitner, Jurgen, Bohg, Jeannette, Morales, Antonio, Asfour, Tamim, Kragic, Danica, Fox, Dieter, Cosgun, Akansel

    ISSN: 1552-3098, 1941-0468, 1941-0468
    Vydáno: New York IEEE 01.10.2023
    Vydáno v IEEE transactions on robotics (01.10.2023)
    “…Grasping is the process of picking up an object by applying forces and torques at a set of contacts. Recent advances in deep learning methods have allowed…”
    Získat plný text
    Journal Article
  3. 3

    DRL-VO: Learning to Navigate Through Crowded Dynamic Scenes Using Velocity Obstacles Autor Xie, Zhanteng, Dames, Philip

    ISSN: 1552-3098, 1941-0468
    Vydáno: New York IEEE 01.08.2023
    Vydáno v IEEE transactions on robotics (01.08.2023)
    “…This article proposes a novel learning-based control policy with strong generalizability to new environments that enables a mobile robot to navigate…”
    Získat plný text
    Journal Article
  4. 4

    Motion Planning Networks: Bridging the Gap Between Learning-Based and Classical Motion Planners Autor Qureshi, Ahmed Hussain, Miao, Yinglong, Simeonov, Anthony, Yip, Michael C.

    ISSN: 1552-3098, 1941-0468
    Vydáno: New York IEEE 01.02.2021
    Vydáno v IEEE transactions on robotics (01.02.2021)
    “…This article describes motion planning networks (MPNet), a computationally efficient, learning-based neural planner for solving motion planning problems.MPNet…”
    Získat plný text
    Journal Article
  5. 5

    What the Constant Velocity Model Can Teach Us About Pedestrian Motion Prediction Autor Scholler, Christoph, Aravantinos, Vincent, Lay, Florian, Knoll, Alois

    ISSN: 2377-3766, 2377-3766
    Vydáno: Piscataway IEEE 01.04.2020
    Vydáno v IEEE robotics and automation letters (01.04.2020)
    “…Pedestrian motion prediction is a fundamental task for autonomous robots and vehicles to operate safely. In recent years many complex approaches based on…”
    Získat plný text
    Journal Article
  6. 6

    Making Sense of Vision and Touch: Learning Multimodal Representations for Contact-Rich Tasks Autor Lee, Michelle A., Zhu, Yuke, Zachares, Peter, Tan, Matthew, Srinivasan, Krishnan, Savarese, Silvio, Fei-Fei, Li, Garg, Animesh, Bohg, Jeannette

    ISSN: 1552-3098, 1941-0468
    Vydáno: New York IEEE 01.06.2020
    Vydáno v IEEE transactions on robotics (01.06.2020)
    “…Contact-rich manipulation tasks in unstructured environments often require both haptic and visual feedback. It is nontrivial to manually design a robot…”
    Získat plný text
    Journal Article
  7. 7

    Flow: A Modular Learning Framework for Mixed Autonomy Traffic Autor Wu, Cathy, Kreidieh, Abdul Rahman, Parvate, Kanaad, Vinitsky, Eugene, Bayen, Alexandre M.

    ISSN: 1552-3098, 1941-0468
    Vydáno: New York IEEE 01.04.2022
    Vydáno v IEEE transactions on robotics (01.04.2022)
    “…The rapid development of autonomous vehicles (AVs) holds vast potential for transportation systems through improved safety, efficiency, and access to mobility…”
    Získat plný text
    Journal Article
  8. 8

    RLOC: Terrain-Aware Legged Locomotion Using Reinforcement Learning and Optimal Control Autor Gangapurwala, Siddhant, Geisert, Mathieu, Orsolino, Romeo, Fallon, Maurice, Havoutis, Ioannis

    ISSN: 1552-3098, 1941-0468
    Vydáno: New York IEEE 01.10.2022
    Vydáno v IEEE transactions on robotics (01.10.2022)
    “…We present a unified model-based and data-driven approach for quadrupedal planning and control to achieve dynamic locomotion over uneven terrain. We utilize…”
    Získat plný text
    Journal Article
  9. 9

    Towards Generalization in Target-Driven Visual Navigation by Using Deep Reinforcement Learning Autor Devo, Alessandro, Mezzetti, Giacomo, Costante, Gabriele, Fravolini, Mario L., Valigi, Paolo

    ISSN: 1552-3098, 1941-0468
    Vydáno: New York IEEE 01.10.2020
    Vydáno v IEEE transactions on robotics (01.10.2020)
    “…Among the main challenges in robotics, target-driven visual navigation has gained increasing interest in recent years. In this task, an agent has to navigate…”
    Získat plný text
    Journal Article
  10. 10

    A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder Autor Daehyung Park, Hoshi, Yuuna, Kemp, Charles C.

    ISSN: 2377-3766, 2377-3766
    Vydáno: Piscataway IEEE 01.07.2018
    Vydáno v IEEE robotics and automation letters (01.07.2018)
    “…The detection of anomalous executions is valuable for reducing potential hazards in assistive manipulation. Multimodal sensory signals can be helpful for…”
    Získat plný text
    Journal Article
  11. 11

    Fast Underwater Image Enhancement for Improved Visual Perception Autor Islam, Md Jahidul, Xia, Youya, Sattar, Junaed

    ISSN: 2377-3766, 2377-3766
    Vydáno: Piscataway IEEE 01.04.2020
    Vydáno v IEEE robotics and automation letters (01.04.2020)
    “…In this letter, we present a conditional generative adversarial network-based model for real-time underwater image enhancement. To supervise the adversarial…”
    Získat plný text
    Journal Article
  12. 12

    Cat-Like Jumping and Landing of Legged Robots in Low Gravity Using Deep Reinforcement Learning Autor Rudin, Nikita, Kolvenbach, Hendrik, Tsounis, Vassilios, Hutter, Marco

    ISSN: 1552-3098, 1941-0468
    Vydáno: New York IEEE 01.02.2022
    Vydáno v IEEE transactions on robotics (01.02.2022)
    “…In this article, we show that learned policies can be applied to solve legged locomotion control tasks with extensive flight phases, such as those encountered…”
    Získat plný text
    Journal Article
  13. 13

    RLBench: The Robot Learning Benchmark & Learning Environment Autor James, Stephen, Ma, Zicong, Arrojo, David Rovick, Davison, Andrew J.

    ISSN: 2377-3766, 2377-3766
    Vydáno: Piscataway IEEE 01.04.2020
    Vydáno v IEEE robotics and automation letters (01.04.2020)
    “…We present a challenging new benchmark and learning-environment for robot learning: RLBench. The benchmark features 100 completely unique, hand-designed tasks,…”
    Získat plný text
    Journal Article
  14. 14

    DIGIT: A Novel Design for a Low-Cost Compact High-Resolution Tactile Sensor With Application to In-Hand Manipulation Autor Lambeta, Mike, Chou, Po-Wei, Tian, Stephen, Yang, Brian, Maloon, Benjamin, Most, Victoria Rose, Stroud, Dave, Santos, Raymond, Byagowi, Ahmad, Kammerer, Gregg, Jayaraman, Dinesh, Calandra, Roberto

    ISSN: 2377-3766, 2377-3766
    Vydáno: Piscataway IEEE 01.07.2020
    Vydáno v IEEE robotics and automation letters (01.07.2020)
    “…Despite decades of research, general purpose in-hand manipulation remains one of the unsolved challenges of robotics. One of the contributing factors that…”
    Získat plný text
    Journal Article
  15. 15

    Deep Reinforcement Learning Robot for Search and Rescue Applications: Exploration in Unknown Cluttered Environments Autor Niroui, Farzad, Kaicheng Zhang, Kashino, Zendai, Nejat, Goldie

    ISSN: 2377-3766, 2377-3766
    Vydáno: Piscataway IEEE 01.04.2019
    Vydáno v IEEE robotics and automation letters (01.04.2019)
    “…Rescue robots can be used in urban search and rescue (USAR) applications to perform the important task of exploring unknown cluttered environments. Due to the…”
    Získat plný text
    Journal Article
  16. 16

    More Than a Feeling: Learning to Grasp and Regrasp Using Vision and Touch Autor Calandra, Roberto, Owens, Andrew, Jayaraman, Dinesh, Lin, Justin, Wenzhen Yuan, Malik, Jitendra, Adelson, Edward H., Levine, Sergey

    ISSN: 2377-3766, 2377-3766
    Vydáno: Piscataway IEEE 01.10.2018
    Vydáno v IEEE robotics and automation letters (01.10.2018)
    “…For humans, the process of grasping an object relies heavily on rich tactile feedback. Most recent robotic grasping work, however, has been based only on…”
    Získat plný text
    Journal Article
  17. 17

    DeepGait: Planning and Control of Quadrupedal Gaits Using Deep Reinforcement Learning Autor Tsounis, Vassilios, Alge, Mitja, Lee, Joonho, Farshidian, Farbod, Hutter, Marco

    ISSN: 2377-3766, 2377-3766
    Vydáno: Piscataway IEEE 01.04.2020
    Vydáno v IEEE robotics and automation letters (01.04.2020)
    “…This letter addresses the problem of legged locomotion in non-flat terrain. As legged robots such as quadrupeds are to be deployed in terrains with geometries…”
    Získat plný text
    Journal Article
  18. 18

    Learning Robust Control Policies for End-to-End Autonomous Driving From Data-Driven Simulation Autor Amini, Alexander, Gilitschenski, Igor, Phillips, Jacob, Moseyko, Julia, Banerjee, Rohan, Karaman, Sertac, Rus, Daniela

    ISSN: 2377-3766, 2377-3766
    Vydáno: Piscataway IEEE 01.04.2020
    Vydáno v IEEE robotics and automation letters (01.04.2020)
    “…In this work, we present a data-driven simulation and training engine capable of learning end-to-end autonomous vehicle control policies using only sparse…”
    Získat plný text
    Journal Article
  19. 19

    Interactive Gibson Benchmark: A Benchmark for Interactive Navigation in Cluttered Environments Autor Xia, Fei, Shen, William B., Li, Chengshu, Kasimbeg, Priya, Tchapmi, Micael Edmond, Toshev, Alexander, Martin-Martin, Roberto, Savarese, Silvio

    ISSN: 2377-3766, 2377-3766
    Vydáno: Piscataway IEEE 01.04.2020
    Vydáno v IEEE robotics and automation letters (01.04.2020)
    “…We present Interactive Gibson Benchmark, the first comprehensive benchmark for training and evaluating Interactive Navigation solutions. Interactive Navigation…”
    Získat plný text
    Journal Article
  20. 20

    Deep Neural Network Based Electrical Impedance Tomographic Sensing Methodology for Large-Area Robotic Tactile Sensing Autor Park, Hyunkyu, Park, Kyungseo, Mo, Sangwoo, Kim, Jung

    ISSN: 1552-3098, 1941-0468
    Vydáno: New York IEEE 01.10.2021
    Vydáno v IEEE transactions on robotics (01.10.2021)
    “…Electrical impedance tomography (EIT) based tactile sensor offers significant benefits on practical deployment because of its sparse electrode allocation,…”
    Získat plný text
    Journal Article