Suchergebnisse - "Deep learning architectures and techniques; Segmentation"
-
1
TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… Although vision transformers (ViTs) have achieved great success in computer vision, the heavy computational cost hampers their applications to dense prediction …”
Volltext
Tagungsbericht -
2
Learning What Not to Segment: A New Perspective on Few-Shot Segmentation
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… Recently few-shot segmentation (FSS) has been extensively developed. Most previous works strive to achieve generalization through the meta-learning framework …”
Volltext
Tagungsbericht -
3
Segment, Magnify and Reiterate: Detecting Camouflaged Objects the Hard Way
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… It is challenging to accurately detect camouflaged objects from their highly similar surroundings. Existing methods mainly leverage a single-stage detection …”
Volltext
Tagungsbericht -
4
PolyWorld: Polygonal Building Extraction with Graph Neural Networks in Satellite Images
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… While most state-of-the-art instance segmentation methods produce binary segmentation masks, geographic and cartographic applications typically require precise …”
Volltext
Tagungsbericht -
5
Deep orientation-aware functional maps: Tackling symmetry issues in Shape Matching
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… State-of-the-art fully intrinsic network for non-rigid shape matching are unable to disambiguate between shape inner symmetries. Meanwhile, recent advances in …”
Volltext
Tagungsbericht -
6
BoxeR: Box-Attention for 2D and 3D Transformers
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… In this paper, we propose a simple attention mechanism, we call Box-Attention. It enables spatial interaction between grid features, as sampled from boxes of …”
Volltext
Tagungsbericht -
7
Vox2Cortex: Fast Explicit Reconstruction of Cortical Surfaces from 3D MRI Scans with Geometric Deep Neural Networks
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… The reconstruction of cortical surfaces from brain magnetic resonance imaging (MRI) scans is essential for quantitative analyses of cortical thickness and …”
Volltext
Tagungsbericht -
8
Generalizing Interactive Backpropagating Refinement for Dense Prediction Networks
ISSN: 1063-6919Veröffentlicht: IEEE 01.06.2022Veröffentlicht in Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… As deep neural networks become the state-of-the-art approach in the field of computer vision for dense prediction tasks, many methods have been developed for …”
Volltext
Tagungsbericht