Suchergebnisse - "Deep learning architectures and techniques; Segmentation"

  • Treffer 1 - 8 von 8
Treffer weiter einschränken
  1. 1

    TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation von Zhang, Wenqiang, Huang, Zilong, Luo, Guozhong, Chen, Tao, Wang, Xinggang, Liu, Wenyu, Yu, Gang, Shen, Chunhua

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… Although vision transformers (ViTs) have achieved great success in computer vision, the heavy computational cost hampers their applications to dense prediction …”
    Volltext
    Tagungsbericht
  2. 2

    Learning What Not to Segment: A New Perspective on Few-Shot Segmentation von Lang, Chunbo, Cheng, Gong, Tu, Binfei, Han, Junwei

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… Recently few-shot segmentation (FSS) has been extensively developed. Most previous works strive to achieve generalization through the meta-learning framework …”
    Volltext
    Tagungsbericht
  3. 3

    Segment, Magnify and Reiterate: Detecting Camouflaged Objects the Hard Way von Jia, Qi, Yao, Shuilian, Liu, Yu, Fan, Xin, Liu, Risheng, Luo, Zhongxuan

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… It is challenging to accurately detect camouflaged objects from their highly similar surroundings. Existing methods mainly leverage a single-stage detection …”
    Volltext
    Tagungsbericht
  4. 4

    PolyWorld: Polygonal Building Extraction with Graph Neural Networks in Satellite Images von Zorzi, Stefano, Bazrafkan, Shabab, Habenschuss, Stefan, Fraundorfer, Friedrich

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… While most state-of-the-art instance segmentation methods produce binary segmentation masks, geographic and cartographic applications typically require precise …”
    Volltext
    Tagungsbericht
  5. 5

    Deep orientation-aware functional maps: Tackling symmetry issues in Shape Matching von Donati, Nicolas, Corman, Etienne, Ovsjanikov, Maks

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… State-of-the-art fully intrinsic network for non-rigid shape matching are unable to disambiguate between shape inner symmetries. Meanwhile, recent advances in …”
    Volltext
    Tagungsbericht
  6. 6

    BoxeR: Box-Attention for 2D and 3D Transformers von Nguyen, Duy-Kien, Ju, Jihong, Booij, Olaf, Oswald, Martin R., Snoek, Cees G. M.

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… In this paper, we propose a simple attention mechanism, we call Box-Attention. It enables spatial interaction between grid features, as sampled from boxes of …”
    Volltext
    Tagungsbericht
  7. 7

    Vox2Cortex: Fast Explicit Reconstruction of Cortical Surfaces from 3D MRI Scans with Geometric Deep Neural Networks von Bongratz, Fabian, Rickmann, Anne-Marie, Polsterl, Sebastian, Wachinger, Christian

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… The reconstruction of cortical surfaces from brain magnetic resonance imaging (MRI) scans is essential for quantitative analyses of cortical thickness and …”
    Volltext
    Tagungsbericht
  8. 8

    Generalizing Interactive Backpropagating Refinement for Dense Prediction Networks von Lin, Fanqing, Price, Brian, Martinez, Tony

    ISSN: 1063-6919
    Veröffentlicht: IEEE 01.06.2022
    “… As deep neural networks become the state-of-the-art approach in the field of computer vision for dense prediction tasks, many methods have been developed for …”
    Volltext
    Tagungsbericht