Suchergebnisse - "Deep Q-Network algorithm"

  • Treffer 1 - 5 von 5
Treffer weiter einschränken
  1. 1

    Machine learning for the automatic assessment of aortic rotational flow and wall shear stress from 4D flow cardiac magnetic resonance imaging von Garrido-Oliver, Juan, Aviles, Jordina, Córdova, Marcos Mejía, Dux-Santoy, Lydia, Ruiz-Muñoz, Aroa, Teixido-Tura, Gisela, Maso Talou, Gonzalo D., Morales Ferez, Xabier, Jiménez, Guillermo, Evangelista, Arturo, Ferreira-González, Ignacio, Rodriguez-Palomares, Jose, Camara, Oscar, Guala, Andrea

    ISSN: 1432-1084, 0938-7994, 1432-1084
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2022
    Veröffentlicht in European radiology (01.10.2022)
    “… The cohort was divided into training (323 patients) and testing (81) sets and used to train and test a 3D nnU-Net for segmentation and a Deep Q-Network algorithm for landmark detection. In-plane (IRF) and through-plane (SFRR …”
    Volltext
    Journal Article
  2. 2

    Joint Deep Reinforcement Learning and Unfolding: Beam Selection and Precoding for mmWave Multiuser MIMO With Lens Arrays von Hu, Qiyu, Liu, Yanzhen, Cai, Yunlong, Yu, Guanding, Ding, Zhi

    ISSN: 0733-8716, 1558-0008
    Veröffentlicht: New York IEEE 01.08.2021
    Veröffentlicht in IEEE journal on selected areas in communications (01.08.2021)
    “… In this work, we investigate the joint design of beam selection and digital precoding matrices for mmWave MU-MIMO systems with DLA to maximize the sum-rate subject to the transmit power constraint …”
    Volltext
    Journal Article
  3. 3

    Simulation of Vehicle Interaction Behavior in Merging Scenarios: A Deep Maximum Entropy-Inverse Reinforcement Learning Method Combined With Game Theory von Li, Wenli, Qiu, Fanke, Li, Lingxi, Zhang, Yinan, Wang, Kan

    ISSN: 2379-8858, 2379-8904
    Veröffentlicht: Piscataway IEEE 01.01.2024
    Veröffentlicht in IEEE transactions on intelligent vehicles (01.01.2024)
    “… Simulation testing based on virtual scenarios can improve the efficiency of safety testing for high-level autonomous vehicles (AVs). In most traffic scenarios, …”
    Volltext
    Journal Article
  4. 4

    An Independent Study of Reinforcement Learning and Autonomous Driving von Yang, Hanzhi

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 20.08.2021
    Veröffentlicht in arXiv.org (20.08.2021)
    “… Secondly, we gained an understanding of and implemented the deep Q-network algorithm for Cart-Pole environment …”
    Volltext
    Paper
  5. 5

    Joint Deep Reinforcement Learning and Unfolding: Beam Selection and Precoding for mmWave Multiuser MIMO with Lens Arrays von Hu, Qiyu, Liu, Yanzhen, Cai, Yunlong, Yu, Guanding, Ding, Zhi

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 05.01.2021
    Veröffentlicht in arXiv.org (05.01.2021)
    “… In this work, we investigate the joint design of beam selection and digital precoding matrices for mmWave MU-MIMO systems with DLA to maximize the sum-rate subject to the transmit power constraint …”
    Volltext
    Paper