Suchergebnisse - "Decoding algorithms"

  1. 1

    Comparison of brain–computer interface decoding algorithms in open-loop and closed-loop control von Koyama, Shinsuke, Chase, Steven M., Whitford, Andrew S., Velliste, Meel, Schwartz, Andrew B., Kass, Robert E.

    ISSN: 0929-5313, 1573-6873, 1573-6873
    Veröffentlicht: Boston Springer US 01.08.2010
    Veröffentlicht in Journal of computational neuroscience (01.08.2010)
    “… Neuroprosthetic devices such as a computer cursor can be controlled by the activity of cortical neurons when an appropriate algorithm is used to decode motor …”
    Volltext
    Journal Article
  2. 2

    Comparative Analysis of Neural Decoding Algorithms for Brain-Machine Interfaces von Shevchenko, Olena, Yeremeieva, Sofiia, Laschowski, Brokoslaw

    ISSN: 1945-7901, 1945-7901
    Veröffentlicht: United States IEEE 01.05.2025
    “… Accurate neural decoding of brain dynamics remains an open challenge in brain-machine interfaces. While various signal processing, feature extraction, and …”
    Volltext
    Tagungsbericht Journal Article
  3. 3

    Static Versus Dynamic Decoding Algorithms in a Non-Invasive Body-Machine Interface von Seanez-Gonzalez, Ismael, Pierella, Camilla, Farshchiansadegh, Ali, Thorp, Elias B., Abdollahi, Farnaz, Pedersen, Jessica P., Mussa-Ivaldi, Ferdinando A.

    ISSN: 1534-4320, 1558-0210
    Veröffentlicht: United States IEEE 01.07.2017
    “… We compare the effectiveness of two decoding algorithms that transform a high-dimensional body-signal vector into a lower dimensional control vector on six subjects with high-level SCI and eight controls …”
    Volltext
    Journal Article
  4. 4

    Microneurography as a tool to develop decoding algorithms for peripheral neuro-controlled hand prostheses von Petrini, Francesco M., Mazzoni, Alberto, Rigosa, Jacopo, Giambattistelli, Federica, Granata, Giuseppe, Barra, Beatrice, Pampaloni, Alessandra, Guglielmelli, Eugenio, Zollo, Loredana, Capogrosso, Marco, Micera, Silvestro, Raspopovic, Stanisa

    ISSN: 1475-925X, 1475-925X
    Veröffentlicht: London BioMed Central 08.04.2019
    Veröffentlicht in Biomedical engineering online (08.04.2019)
    “… Findings To address this issue, in this work we acquired neural efferent activities from healthy subjects performing hand-related tasks using ultrasound-guided microneurography, a minimally invasive …”
    Volltext
    Journal Article
  5. 5

    Static vs. dynamic decoding algorithms in a non-invasive body-machine interface von Seáñez-González, Ismael, Pierella, Camilla, Farshchiansadegh, Ali, Thorp, Elias B., Abdollahi, Farnaz, Pedersen, Jessica, Mussa-Ivaldi, Ferdinando A.

    ISSN: 1534-4320, 1558-0210
    Veröffentlicht: 15.12.2016
    “… We compare the effectiveness of two decoding algorithms that transform a high-dimensional body-signal vector into a lower dimensional control vector on 6 subjects with high-level SCI and 8 controls …”
    Volltext
    Journal Article
  6. 6

    Comparative analysis of neural decoding algorithms for brain-machine interfaces von Shevchenko, Olena, Yeremeieva, Sofiia, Laschowski, Brokoslaw

    ISSN: 2692-8205, 2692-8205
    Veröffentlicht: Cold Spring Harbor Cold Spring Harbor Laboratory Press 10.12.2024
    Veröffentlicht in bioRxiv (10.12.2024)
    “… Accurate neural decoding of brain dynamics remains a significant and open challenge in brain-machine interfaces. While various signal processing, feature …”
    Volltext
    Paper
  7. 7

    Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain–computer interface algorithms von Chase, Steven M., Schwartz, Andrew B., Kass, Robert E.

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Veröffentlicht: United States Elsevier Ltd 01.11.2009
    Veröffentlicht in Neural networks (01.11.2009)
    “… The activity of dozens of simultaneously recorded neurons can be used to control the movement of a robotic arm or a cursor on a computer screen. This motor …”
    Volltext
    Journal Article
  8. 8

    Effective implementation of modern McEliece cryptosystem on generalized (L,G)-codes von Noskov, I.K., Bezzateev, S.V.

    ISSN: 2226-1494, 2500-0373
    Veröffentlicht: ITMO University 01.08.2020
    “… Subject of Research. The paper presents the study of methods and approaches to implementation of the modern McEliece cryptosystem based on separable generalized (L, G)-codes. Method …”
    Volltext
    Journal Article
  9. 9

    Hamming Encoding and Decoding Algorithms for TDCS and WDCS Design von Sharma, Mrinal, Singh, Gagandeep

    Veröffentlicht: IEEE 01.04.2015
    “… In Communication Systems many communication channels are subject to noise and other Errors due to the channel, and thus errors may be there during transmission process from the Transmitter to a receiver …”
    Volltext
    Tagungsbericht
  10. 10

    Reducing the complexity of LDPC decoding algorithms: An optimization-oriented approach von Sarajlic, Muris, Liang Liu, Edfors, Ove

    ISSN: 2166-9570
    Veröffentlicht: IEEE 01.09.2014
    “… Subject to specified performance constraints and adaptive to environment conditions, the proposed framework leverages the adjustable performance-complexity tradeoffs of the decoder to deliver …”
    Volltext
    Tagungsbericht
  11. 11

    On the key equation von Fitzpatrick, P.

    ISSN: 0018-9448, 1557-9654
    Veröffentlicht: New York IEEE 01.09.1995
    Veröffentlicht in IEEE transactions on information theory (01.09.1995)
    “… We consider the set M.< > …”
    Volltext
    Journal Article
  12. 12

    Reduced complexity decoding algorithms for low -density parity check codes and turbo codes von Chen, Jinghu

    ISBN: 9780496575398, 0496575392
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2003
    “… For both LDPC codes and turbo codes, optimum decoding algorithms can provide very good performance …”
    Volltext
    Dissertation
  13. 13

    Brain-machine interfaces in rat motor cortex: implications of adaptive decoding algorithms von Otto, K.J., Vetter, R.J., Marzullo, T.C., Kipke, D.R.

    ISBN: 0780375793, 9780780375796
    Veröffentlicht: IEEE 2003
    Veröffentlicht in Conference proceedings (2003)
    “… Construction of a direct brain-machine interface (BMI) for neuroprosthetic purposes is at the forefront of many current neural engineering thrusts. Due to …”
    Volltext
    Tagungsbericht
  14. 14

    A cross-subject decoding algorithm for patients with disorder of consciousness based on P300 brain computer interface von Wang, Fei, Wan, Yinxing, Li, Zhuorong, Qi, Feifei, Li, Jingcong

    ISSN: 1662-453X, 1662-4548, 1662-453X
    Veröffentlicht: Switzerland Frontiers Research Foundation 20.07.2023
    Veröffentlicht in Frontiers in neuroscience (20.07.2023)
    “… ), which can directly connect the brain and external devices. However, the DOC patients' EEG differ significantly from that of the normal person and are difficult to collected, the decoding algorithm currently only is trained based on a small amount …”
    Volltext
    Journal Article
  15. 15

    Decoding algorithm appreciation: Unveiling the impact of familiarity with algorithms, tasks, and algorithm performance von Mahmud, Hasan, Islam, A.K.M. Najmul, Luo, Xin (Robert), Mikalef, Patrick

    ISSN: 0167-9236
    Veröffentlicht: Elsevier B.V 01.04.2024
    Veröffentlicht in Decision Support Systems (01.04.2024)
    “… Algorithm appreciation, defined as an individual's reliance or tendency to rely on algorithms in decision-making, has emerged as a subject of growing scholarly interest …”
    Volltext
    Journal Article
  16. 16

    Dataset Evaluation Method and Application for Performance Testing of SSVEP-BCI Decoding Algorithm von Liang, Liyan, Zhang, Qian, Zhou, Jie, Li, Wenyu, Gao, Xiaorong

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 11.07.2023
    Veröffentlicht in Sensors (Basel, Switzerland) (11.07.2023)
    “… Most new SSVEP decoding algorithms are tested based on self-collected data or offline performance verification using one or two previous datasets, which can lead to performance differences when used …”
    Volltext
    Journal Article
  17. 17

    A Transfer Learning SSVEP Decoding Algorithm Calibrated With Single-Trial Data von Jin, Jing, Qin, Ke, Allison, Brendan Z., Li, Shurui, Zhang, Yutao, Wang, Xingyu, Cichocki, Andrzej

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 24.10.2025
    “… Training-based algorithms significantly outperform training-free methods in terms of recognition performance for steady-state visual-evoked potential …”
    Volltext
    Journal Article
  18. 18

    SMMTM: Motor imagery EEG decoding algorithm using a hybrid multi-branch separable convolutional self-attention temporal convolutional network von Cao, DianGuo, Yu, ZhenYuan, Wang, Jinqiang, Wu, Yuqiang

    ISSN: 1932-6203, 1932-6203
    Veröffentlicht: United States Public Library of Science 23.10.2025
    Veröffentlicht in PloS one (23.10.2025)
    “… Motor imagery (MI) is a brain-computer interface (BCI) technology with the potential to change human life in the future. MI signals have been widely applied in …”
    Volltext
    Journal Article
  19. 19

    Weighted Filter Bank and Regularization Common Spatial Pattern-Based Decoding Algorithm for Brain-Computer Interfaces von Ye, Jincai, Zhu, Jiajie, Huang, Shoulin

    ISSN: 2076-3417, 2076-3417
    Veröffentlicht: Basel MDPI AG 01.05.2025
    Veröffentlicht in Applied sciences (01.05.2025)
    “… The algorithm divides the signal into multiple frequency bands, adaptively assigns subject weights based on the mutual information maximization criterion, and optimizes the covariance matrix …”
    Volltext
    Journal Article
  20. 20

    A Study of the Effects of Electrode Number and Decoding Algorithm on Online EEG-Based BCI Behavioral Performance von Meng, Jianjun, Edelman, Bradley J., Olsoe, Jaron, Jacobs, Gabriel, Zhang, Shuying, Beyko, Angeliki, He, Bin

    ISSN: 1662-453X, 1662-4548, 1662-453X
    Veröffentlicht: Switzerland Frontiers Research Foundation 06.04.2018
    Veröffentlicht in Frontiers in neuroscience (06.04.2018)
    “… The selection of control signals, e.g., the channel configuration and decoding algorithm, plays a vital role in the online performance and progressing of BCI control …”
    Volltext
    Journal Article