Výsledky vyhľadávania - "Convolutional autoencoders"

  1. 1

    Delamination prediction in composite panels using unsupervised-feature learning methods with wavelet-enhanced guided wave representations Autor Rautela, Mahindra, Senthilnath, J., Monaco, Ernesto, Gopalakrishnan, S.

    ISSN: 0263-8223, 1879-1085
    Vydavateľské údaje: Elsevier Ltd 01.07.2022
    Vydané v Composite structures (01.07.2022)
    “…With the introduction of damage tolerance-based design philosophies, the demand for reliable and robust structural health monitoring (SHM) procedures for…”
    Získať plný text
    Journal Article
  2. 2

    Attention-based Convolutional Autoencoders for 3D-Variational Data Assimilation Autor Mack, Julian, Arcucci, Rossella, Molina-Solana, Miguel, Guo, Yi-Ke

    ISSN: 0045-7825, 1879-2138
    Vydavateľské údaje: Elsevier B.V 01.12.2020
    “…We propose a new ‘Bi-Reduced Space’ approach to solving 3D Variational Data Assimilation using Convolutional Autoencoders. We prove that our approach has the…”
    Získať plný text
    Journal Article
  3. 3
  4. 4

    Graph convolutional autoencoders with co-learning of graph structure and node attributes Autor Wang, Jie, Liang, Jiye, Yao, Kaixuan, Liang, Jianqing, Wang, Dianhui

    ISSN: 0031-3203, 1873-5142
    Vydavateľské údaje: Elsevier Ltd 01.01.2022
    Vydané v Pattern recognition (01.01.2022)
    “…•We propose a novel end-to-end graph autoencoders model for the attributed graph.•The proposed model can reconstruct both the graph structure and node…”
    Získať plný text
    Journal Article
  5. 5

    A deep learning framework for predicting and optimizing flow fields in reactive flows Autor Gharib, Mohsen, Maleki, Farideh Hoseinian, Rößger, Philip, Gräbner, Martin, Richter, Andreas

    ISSN: 2666-8211, 2666-8211
    Vydavateľské údaje: Elsevier B.V 01.03.2026
    Vydané v Chemical engineering journal advances (01.03.2026)
    “…Computational Fluid Dynamics (CFD) is widely used for solving and optimizing the flow fields of different systems and applications. However, running CFD…”
    Získať plný text
    Journal Article
  6. 6

    A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets Autor Pintelas, Emmanuel, Livieris, Ioannis E., Pintelas, Panagiotis E.

    ISSN: 1424-8220, 1424-8220
    Vydavateľské údaje: Basel MDPI AG 20.11.2021
    Vydané v Sensors (Basel, Switzerland) (20.11.2021)
    “…Deep convolutional neural networks have shown remarkable performance in the image classification domain. However, Deep Learning models are vulnerable to noise…”
    Získať plný text
    Journal Article
  7. 7

    Convolutional autoencoders, clustering, and POD for low-dimensional parametrization of flow equations Autor Heiland, Jan, Kim, Yongho

    ISSN: 0898-1221
    Vydavateľské údaje: Elsevier Ltd 01.12.2024
    “…Simulations of large-scale dynamical systems require expensive computations and large amounts of storage. Low-dimensional representations of high-dimensional…”
    Získať plný text
    Journal Article
  8. 8

    Non-intrusive surrogate modeling for parametrized time-dependent partial differential equations using convolutional autoencoders Autor Nikolopoulos, Stefanos, Kalogeris, Ioannis, Papadopoulos, Vissarion

    ISSN: 0952-1976, 1873-6769
    Vydavateľské údaje: Elsevier Ltd 01.03.2022
    “…This paper presents a novel non-intrusive surrogate modeling scheme based on deep learning for predictive modeling of complex systems, described by…”
    Získať plný text
    Journal Article
  9. 9

    High-Resolution SAR Image Classification via Deep Convolutional Autoencoders Autor Geng, Jie, Fan, Jianchao, Wang, Hongyu, Ma, Xiaorui, Li, Baoming, Chen, Fuliang

    ISSN: 1545-598X, 1558-0571
    Vydavateľské údaje: Piscataway IEEE 01.11.2015
    “…Synthetic aperture radar (SAR) image classification is a hot topic in the interpretation of SAR images. However, the absence of effective feature…”
    Získať plný text
    Journal Article
  10. 10

    A Novel Convolutional Autoencoder-Based Clutter Removal Method for Buried Threat Detection in Ground-Penetrating Radar Autor Temlioglu, Eyyup, Erer, Isin

    ISSN: 0196-2892, 1558-0644
    Vydavateľské údaje: New York IEEE 2022
    “…The clutter encountered in ground-penetrating radar (GPR) systems seriously affects the performance of the subsurface target detection methods. A new clutter…”
    Získať plný text
    Journal Article
  11. 11

    Hyperspecral Unmixing Based on Multilinear Mixing Model Using Convolutional Autoencoders Autor Fang, Tingting, Zhu, Fei, Chen, Jie

    ISSN: 0196-2892, 1558-0644
    Vydavateľské údaje: New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 01.01.2024
    “…Unsupervised spectral unmixing (SU) consists of representing each observed pixel as a combination of several pure materials known as endmembers, along with…”
    Získať plný text
    Journal Article
  12. 12

    Hyperspectral Unmixing Based on Multilinear Mixing Model Using Convolutional Autoencoders Autor Fang, Tingting, Zhu, Fei, Chen, Jie

    ISSN: 0196-2892, 1558-0644
    Vydavateľské údaje: IEEE 2024
    “…Unsupervised spectral unmixing (SU) consists of representing each observed pixel as a combination of several pure materials known as endmembers, along with…”
    Získať plný text
    Journal Article
  13. 13

    Deep Neural Network Initialization Methods for Micro-Doppler Classification With Low Training Sample Support Autor Seyfioglu, Mehmet Saygin, Gurbuz, Sevgi Zubeyde

    ISSN: 1545-598X, 1558-0571
    Vydavateľské údaje: Piscataway IEEE 01.12.2017
    “…Deep neural networks (DNNs) require large-scale labeled data sets to prevent overfitting while having good generalization. In radar applications, however,…”
    Získať plný text
    Journal Article
  14. 14

    Enhancing multi-step-ahead prediction of wave propagation with the CAE-LSTM model: a novel deep learning-based approach to flood dynamics Autor Zheng Han, Guanping Long, Changli Li, Yange Li, Bin Su, Linrong Xu, Weidong Wang, Guangqi Chen

    ISSN: 1947-5705, 1947-5713
    Vydavateľské údaje: Taylor & Francis Group 01.12.2025
    Vydané v Geomatics, natural hazards and risk (01.12.2025)
    “…A deep understanding of the wave propagation process during flood dynamics is fundamental for hazard prediction and mitigation, wherein up-to-date…”
    Získať plný text
    Journal Article
  15. 15

    Polytopic autoencoders with smooth clustering for reduced-order modeling of flows Autor Heiland, Jan, Kim, Yongho

    ISSN: 0021-9991
    Vydavateľské údaje: Elsevier Inc 15.01.2025
    Vydané v Journal of computational physics (15.01.2025)
    “…With the advancement of neural networks, there has been a notable increase, both in terms of quantity and variety, in research publications concerning the…”
    Získať plný text
    Journal Article
  16. 16

    Contrast sensitivity functions in autoencoders Autor Li, Qiang, Gomez-Villa, Alex, Bertalmío, Marcelo, Malo, Jesús

    ISSN: 1534-7362, 1534-7362
    Vydavateľské údaje: United States The Association for Research in Vision and Ophthalmology 19.05.2022
    “…Three decades ago, Atick et al. suggested that human frequency sensitivity may emerge from the enhancement required for a more efficient analysis of retinal…”
    Získať plný text
    Journal Article
  17. 17

    A novel multichannel sparse convolutional autoencoder for electrocardiogram signal compression Autor Bekiryazıcı, Tahir, Damkacı, Mehmet, Aydemir, Gürkan, Gürkan, Hakan

    ISSN: 0022-0736, 1532-8430, 1532-8430
    Vydavateľské údaje: United States Elsevier Inc 01.11.2025
    Vydané v Journal of electrocardiology (01.11.2025)
    “…Electrocardiogram (ECG) signal compression is paramount in continuously monitoring cardiac patients, as it reduces data storage and transmission costs. Deep…”
    Získať plný text
    Journal Article
  18. 18

    Accurate microwave filter design based on particle swarm optimization and one‐dimensional convolution autoencoders Autor Wang, Yanxing, Zhang, Zhuowei, Yi, Yaxin, Zhang, Yongliang

    ISSN: 1096-4290, 1099-047X
    Vydavateľské údaje: Hoboken, USA John Wiley & Sons, Inc 01.04.2022
    “…This paper proposes a one‐dimensional convolutional autoencoders (1D‐CAE) surrogate‐based electromagnetic (EM) optimization technique exploiting particle swarm…”
    Získať plný text
    Journal Article
  19. 19

    A novel unsupervised approach based on the hidden features of Deep Denoising Autoencoders for COVID-19 disease detection Autor Scarpiniti, Michele, Sarv Ahrabi, Sima, Baccarelli, Enzo, Piazzo, Lorenzo, Momenzadeh, Alireza

    ISSN: 0957-4174, 1873-6793, 0957-4174
    Vydavateľské údaje: United States Elsevier Ltd 15.04.2022
    Vydané v Expert systems with applications (15.04.2022)
    “…Chest imaging can represent a powerful tool for detecting the Coronavirus disease 2019 (COVID-19). Among the available technologies, the chest Computed…”
    Získať plný text
    Journal Article
  20. 20

    Dynamic feature capturing in a fluid flow reduced-order model using attention-augmented autoencoders Autor Beiki, Alireza, Kamali, Reza

    ISSN: 0952-1976
    Vydavateľské údaje: Elsevier Ltd 01.06.2025
    “…This study looks into how adding adaptive attention to convolutional autoencoders can help reconstruct flow fields in fluid dynamics applications. The study…”
    Získať plný text
    Journal Article