Výsledky vyhľadávania - "Convolutional autoencoders"
-
1
Delamination prediction in composite panels using unsupervised-feature learning methods with wavelet-enhanced guided wave representations
ISSN: 0263-8223, 1879-1085Vydavateľské údaje: Elsevier Ltd 01.07.2022Vydané v Composite structures (01.07.2022)“…With the introduction of damage tolerance-based design philosophies, the demand for reliable and robust structural health monitoring (SHM) procedures for…”
Získať plný text
Journal Article -
2
Attention-based Convolutional Autoencoders for 3D-Variational Data Assimilation
ISSN: 0045-7825, 1879-2138Vydavateľské údaje: Elsevier B.V 01.12.2020Vydané v Computer methods in applied mechanics and engineering (01.12.2020)“…We propose a new ‘Bi-Reduced Space’ approach to solving 3D Variational Data Assimilation using Convolutional Autoencoders. We prove that our approach has the…”
Získať plný text
Journal Article -
3
Enhanced Intelligent Video Monitoring using Hybrid Integration of Spatiotemporal Autoencoders and Convolutional LSTMs
ISSN: 0350-5596, 1854-3871Vydavateľské údaje: 25.03.2025Vydané v Informatica (Ljubljana) (25.03.2025)Získať plný text
Journal Article -
4
Graph convolutional autoencoders with co-learning of graph structure and node attributes
ISSN: 0031-3203, 1873-5142Vydavateľské údaje: Elsevier Ltd 01.01.2022Vydané v Pattern recognition (01.01.2022)“…•We propose a novel end-to-end graph autoencoders model for the attributed graph.•The proposed model can reconstruct both the graph structure and node…”
Získať plný text
Journal Article -
5
A deep learning framework for predicting and optimizing flow fields in reactive flows
ISSN: 2666-8211, 2666-8211Vydavateľské údaje: Elsevier B.V 01.03.2026Vydané v Chemical engineering journal advances (01.03.2026)“…Computational Fluid Dynamics (CFD) is widely used for solving and optimizing the flow fields of different systems and applications. However, running CFD…”
Získať plný text
Journal Article -
6
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
ISSN: 1424-8220, 1424-8220Vydavateľské údaje: Basel MDPI AG 20.11.2021Vydané v Sensors (Basel, Switzerland) (20.11.2021)“…Deep convolutional neural networks have shown remarkable performance in the image classification domain. However, Deep Learning models are vulnerable to noise…”
Získať plný text
Journal Article -
7
Convolutional autoencoders, clustering, and POD for low-dimensional parametrization of flow equations
ISSN: 0898-1221Vydavateľské údaje: Elsevier Ltd 01.12.2024Vydané v Computers & mathematics with applications (1987) (01.12.2024)“…Simulations of large-scale dynamical systems require expensive computations and large amounts of storage. Low-dimensional representations of high-dimensional…”
Získať plný text
Journal Article -
8
Non-intrusive surrogate modeling for parametrized time-dependent partial differential equations using convolutional autoencoders
ISSN: 0952-1976, 1873-6769Vydavateľské údaje: Elsevier Ltd 01.03.2022Vydané v Engineering applications of artificial intelligence (01.03.2022)“…This paper presents a novel non-intrusive surrogate modeling scheme based on deep learning for predictive modeling of complex systems, described by…”
Získať plný text
Journal Article -
9
High-Resolution SAR Image Classification via Deep Convolutional Autoencoders
ISSN: 1545-598X, 1558-0571Vydavateľské údaje: Piscataway IEEE 01.11.2015Vydané v IEEE geoscience and remote sensing letters (01.11.2015)“…Synthetic aperture radar (SAR) image classification is a hot topic in the interpretation of SAR images. However, the absence of effective feature…”
Získať plný text
Journal Article -
10
A Novel Convolutional Autoencoder-Based Clutter Removal Method for Buried Threat Detection in Ground-Penetrating Radar
ISSN: 0196-2892, 1558-0644Vydavateľské údaje: New York IEEE 2022Vydané v IEEE transactions on geoscience and remote sensing (2022)“…The clutter encountered in ground-penetrating radar (GPR) systems seriously affects the performance of the subsurface target detection methods. A new clutter…”
Získať plný text
Journal Article -
11
Hyperspecral Unmixing Based on Multilinear Mixing Model Using Convolutional Autoencoders
ISSN: 0196-2892, 1558-0644Vydavateľské údaje: New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 01.01.2024Vydané v IEEE transactions on geoscience and remote sensing (01.01.2024)“…Unsupervised spectral unmixing (SU) consists of representing each observed pixel as a combination of several pure materials known as endmembers, along with…”
Získať plný text
Journal Article -
12
Hyperspectral Unmixing Based on Multilinear Mixing Model Using Convolutional Autoencoders
ISSN: 0196-2892, 1558-0644Vydavateľské údaje: IEEE 2024Vydané v IEEE transactions on geoscience and remote sensing (2024)“…Unsupervised spectral unmixing (SU) consists of representing each observed pixel as a combination of several pure materials known as endmembers, along with…”
Získať plný text
Journal Article -
13
Deep Neural Network Initialization Methods for Micro-Doppler Classification With Low Training Sample Support
ISSN: 1545-598X, 1558-0571Vydavateľské údaje: Piscataway IEEE 01.12.2017Vydané v IEEE geoscience and remote sensing letters (01.12.2017)“…Deep neural networks (DNNs) require large-scale labeled data sets to prevent overfitting while having good generalization. In radar applications, however,…”
Získať plný text
Journal Article -
14
Enhancing multi-step-ahead prediction of wave propagation with the CAE-LSTM model: a novel deep learning-based approach to flood dynamics
ISSN: 1947-5705, 1947-5713Vydavateľské údaje: Taylor & Francis Group 01.12.2025Vydané v Geomatics, natural hazards and risk (01.12.2025)“…A deep understanding of the wave propagation process during flood dynamics is fundamental for hazard prediction and mitigation, wherein up-to-date…”
Získať plný text
Journal Article -
15
Polytopic autoencoders with smooth clustering for reduced-order modeling of flows
ISSN: 0021-9991Vydavateľské údaje: Elsevier Inc 15.01.2025Vydané v Journal of computational physics (15.01.2025)“…With the advancement of neural networks, there has been a notable increase, both in terms of quantity and variety, in research publications concerning the…”
Získať plný text
Journal Article -
16
Contrast sensitivity functions in autoencoders
ISSN: 1534-7362, 1534-7362Vydavateľské údaje: United States The Association for Research in Vision and Ophthalmology 19.05.2022Vydané v Journal of vision (Charlottesville, Va.) (19.05.2022)“…Three decades ago, Atick et al. suggested that human frequency sensitivity may emerge from the enhancement required for a more efficient analysis of retinal…”
Získať plný text
Journal Article -
17
A novel multichannel sparse convolutional autoencoder for electrocardiogram signal compression
ISSN: 0022-0736, 1532-8430, 1532-8430Vydavateľské údaje: United States Elsevier Inc 01.11.2025Vydané v Journal of electrocardiology (01.11.2025)“…Electrocardiogram (ECG) signal compression is paramount in continuously monitoring cardiac patients, as it reduces data storage and transmission costs. Deep…”
Získať plný text
Journal Article -
18
Accurate microwave filter design based on particle swarm optimization and one‐dimensional convolution autoencoders
ISSN: 1096-4290, 1099-047XVydavateľské údaje: Hoboken, USA John Wiley & Sons, Inc 01.04.2022Vydané v International journal of RF and microwave computer-aided engineering (01.04.2022)“…This paper proposes a one‐dimensional convolutional autoencoders (1D‐CAE) surrogate‐based electromagnetic (EM) optimization technique exploiting particle swarm…”
Získať plný text
Journal Article -
19
A novel unsupervised approach based on the hidden features of Deep Denoising Autoencoders for COVID-19 disease detection
ISSN: 0957-4174, 1873-6793, 0957-4174Vydavateľské údaje: United States Elsevier Ltd 15.04.2022Vydané v Expert systems with applications (15.04.2022)“…Chest imaging can represent a powerful tool for detecting the Coronavirus disease 2019 (COVID-19). Among the available technologies, the chest Computed…”
Získať plný text
Journal Article -
20
Dynamic feature capturing in a fluid flow reduced-order model using attention-augmented autoencoders
ISSN: 0952-1976Vydavateľské údaje: Elsevier Ltd 01.06.2025Vydané v Engineering applications of artificial intelligence (01.06.2025)“…This study looks into how adding adaptive attention to convolutional autoencoders can help reconstruct flow fields in fluid dynamics applications. The study…”
Získať plný text
Journal Article