Suchergebnisse - "Conditional variational autoencoders"

  1. 1

    3D High-Resolution Cardiac Segmentation Reconstruction From 2D Views Using Conditional Variational Autoencoders von Biffi, Carlo, Cerrolaza, Juan J., Tarroni, Giacomo, de Marvao, Antonio, Cook, Stuart A., O'Regan, Declan P., Rueckert, Daniel

    ISSN: 1945-8452
    Veröffentlicht: IEEE 01.04.2019
    “… To address this, we propose a conditional variational autoencoder architecture able to learn a generative model of 3D high-resolution left ventricular (LV …”
    Volltext
    Tagungsbericht
  2. 2

    3D High-Resolution Cardiac Segmentation Reconstruction from 2D Views using Conditional Variational Autoencoders von Biffi, Carlo, Cerrolaza, Juan J, Tarroni, Giacomo, de Marvao, Antonio, Cook, Stuart A, O'Regan, Declan P, Rueckert, Daniel

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 28.02.2019
    Veröffentlicht in arXiv.org (28.02.2019)
    “… To address this, we propose a conditional variational autoencoder architecture able to learn a generative model of 3D high-resolution left ventricular (LV …”
    Volltext
    Paper
  3. 3

    Sensing anomaly of photovoltaic systems with sequential conditional variational autoencoder von Li, Ding, Zhang, Yufei, Yang, Zheng, Jin, Yaohui, Xu, Yanyan

    ISSN: 0306-2619
    Veröffentlicht: 01.01.2024
    Veröffentlicht in Applied energy (01.01.2024)
    “… This study proposes the Sequential Conditional Variational Autoencoder (SCVAE), which can cope with the sequential impacts of the environment on PV …”
    Volltext
    Journal Article
  4. 4

    Generation of 12-Lead Electrocardiogram with Subject-Specific, Image-Derived Characteristics Using a Conditional Variational Autoencoder von Sang, Yuling, Beetz, Marcel, Grau, Vicente

    ISSN: 1945-8452
    Veröffentlicht: IEEE 28.03.2022
    “… ). Among these, deep generative models have shown their ability in ECG generation. In this paper, we propose a conditional variational autoencoder (cVAE …”
    Volltext
    Tagungsbericht
  5. 5

    Learning a Probabilistic Model for Diffeomorphic Registration von Krebs, Julian, Delingette, Herve, Mailhe, Boris, Ayache, Nicholas, Mansi, Tommaso

    ISSN: 0278-0062, 1558-254X, 1558-254X
    Veröffentlicht: United States IEEE 01.09.2019
    Veröffentlicht in IEEE transactions on medical imaging (01.09.2019)
    “… image. Our unsupervised method is based on the variational inference. In particular, we use a conditional variational autoencoder network and constrain transformations to be symmetric …”
    Volltext
    Journal Article
  6. 6

    Brain fingerprinting and cognitive behavior predicting using functional connectome of high inter-subject variability von Lu, Jiayu, Yan, Tianyi, Yang, Lan, Zhang, Xi, Li, Jiaxin, Li, Dandan, Xiang, Jie, Wang, Bin

    ISSN: 1053-8119, 1095-9572, 1095-9572
    Veröffentlicht: United States Elsevier Inc 15.07.2024
    Veröffentlicht in NeuroImage (Orlando, Fla.) (15.07.2024)
    “… •High inter-subject variability for brain fingerprinting and cognitive behavior predicting …”
    Volltext
    Journal Article
  7. 7

    Spherical Image Generation From a Few Normal-Field-of-View Images by Considering Scene Symmetry von Hara, Takayuki, Mukuta, Yusuke, Harada, Tatsuya

    ISSN: 0162-8828, 1939-3539, 1939-3539, 2160-9292
    Veröffentlicht: United States IEEE 01.05.2023
    “… Spherical images taken in all directions (360 degrees by 180 degrees) can represent an entire space including the subject, providing free direction viewing and an immersive experience to viewers …”
    Volltext
    Journal Article
  8. 8

    Learning a Generative Motion Model From Image Sequences Based on a Latent Motion Matrix von Krebs, Julian, Delingette, Herve, Ayache, Nicholas, Mansi, Tommaso

    ISSN: 0278-0062, 1558-254X, 1558-254X
    Veröffentlicht: United States IEEE 01.05.2021
    Veröffentlicht in IEEE transactions on medical imaging (01.05.2021)
    “… allowing for faster data acquisition and data augmentation. More precisely, the motion matrix allows to transport the recovered motion from one subject to another …”
    Volltext
    Journal Article
  9. 9

    A deep learning-based pipeline for developing multi-rib shape generative model with populational percentiles or anthropometrics as predictors von Huang, Yuan, Holcombe, Sven A., Wang, Stewart C., Tang, Jisi

    ISSN: 0895-6111, 1879-0771, 1879-0771
    Veröffentlicht: United States Elsevier Ltd 01.07.2024
    Veröffentlicht in Computerized medical imaging and graphics (01.07.2024)
    “… Rib cross-sectional shapes (characterized by the outer contour and cortical bone thickness) affect the rib mechanical response under impact loading, thereby …”
    Volltext
    Journal Article
  10. 10

    Heartbeat detection and personal authentication using a 60 GHz Doppler sensor von Asano, Takuma, Izumi, Shintaro, Kawaguchi, Hiroshi

    ISSN: 2673-253X, 2673-253X
    Veröffentlicht: Switzerland Frontiers Media S.A 21.08.2025
    Veröffentlicht in Frontiers in digital health (21.08.2025)
    “… We proposed a method for authenticating and identifying heartbeat signals through supervised learning using a conditional variational autoencoder (CVAE). A 60 …”
    Volltext
    Journal Article
  11. 11

    Individualizing Head-Related Transfer Functions for Binaural Acoustic Applications von Zandi, Navid H., El-Mohandes, Awny M., Zheng, Rong

    Veröffentlicht: IEEE 01.05.2022
    “… Accurate estimations of HRTFs for human subjects are crucial in enabling binaural acoustic applications such as sound localization and 3D sound spatialization …”
    Volltext
    Tagungsbericht
  12. 12

    Individualized multi-horizon MRI trajectory prediction for Alzheimer's Disease von He, Rosemary, Ang, Gabriella, Tward, Daniel

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 04.08.2024
    Veröffentlicht in arXiv.org (04.08.2024)
    “… Here we turn to conditional variational autoencoders to generate individualized MRI predictions given the subject's age, disease status and one previous scan …”
    Volltext
    Paper
  13. 13

    Spherical Image Generation from a Single Normal Field of View Image by Considering Scene Symmetry von Hara, Takayuki, Harada, Tatsuya

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 09.01.2020
    Veröffentlicht in arXiv.org (09.01.2020)
    “… Spherical images taken in all directions (360 degrees) allow representing the surroundings of the subject and the space itself, providing an immersive experience to the viewers …”
    Volltext
    Paper
  14. 14

    Attacks on state-of-the-art face recognition using attentional adversarial attack generative network von Yang, Lu, Song, Qing, Wu, Yingqi

    ISSN: 1380-7501, 1573-7721
    Veröffentlicht: New York Springer US 01.01.2021
    Veröffentlicht in Multimedia tools and applications (01.01.2021)
    “… Therefore, it is very important to study how face recognition networks are subject to attacks …”
    Volltext
    Journal Article
  15. 15

    Conditional VAE for personalized neurofeedback in cognitive training von Tibermacine, Imad Eddine, Russo, Samuele, Scarano, Gianmarco, Tedesco, Giancarlo, Rabehi, Abdelaziz, Alhussan, Amel Ali, Khafaga, Doaa Sami, Eid, Marwa M., El-kenawy, El-Sayed M., Napoli, Christian

    ISSN: 1932-6203, 1932-6203
    Veröffentlicht: United States Public Library of Science 31.10.2025
    Veröffentlicht in PloS one (31.10.2025)
    “… In this work, we explore the use of a Conditional Variational Autoencoder (CVAE) that injects a binary health label …”
    Volltext
    Journal Article
  16. 16

    AI-Based Localized Latent Neural Representations of Acute and Chronic Pain in Rats von Yao, Dunyan, Lloyd, David A., Akay, Yasemin, Ohsawa, Masahiro, Akay, Metin

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Veröffentlicht: United States IEEE 03.11.2025
    Veröffentlicht in IEEE journal of biomedical and health informatics (03.11.2025)
    “… Chronic pain is a widespread phenomenon affecting over 21% of the United States population. Despite the significant impact of pain on a patient's quality of …”
    Volltext
    Journal Article
  17. 17

    Deep conditional generative model for personalization of 12-lead electrocardiograms and cardiovascular risk prediction von Sang, Yuling, Banerjee, Abhirup, Beetz, Marcel, Grau, Vicente

    ISSN: 2673-253X, 2673-253X
    Veröffentlicht: Switzerland Frontiers Media S.A 16.04.2025
    Veröffentlicht in Frontiers in digital health (16.04.2025)
    “… We propose a conditional Variational Autoencoder (cVAE) framework to generate realistic, subject-specific 12-lead ECGs …”
    Volltext
    Journal Article
  18. 18

    Classification of EEG Signal Using Deep Learning Architectures Based Motor-Imagery for an Upper-Limb Rehabilitation Exoskeleton von Titkanlou, Maryam Khoshkhooy, Pham, Duc Thien, Mouček, Roman

    ISSN: 2661-8907, 2662-995X, 2661-8907
    Veröffentlicht: Singapore Springer Nature Singapore 01.03.2025
    Veröffentlicht in SN computer science (01.03.2025)
    “… Three different methods, including noise injection (NI), conditional variational autoencoder (cVAE …”
    Volltext
    Journal Article
  19. 19

    Transfer Learning in Brain-Computer Interfaces with Adversarial Variational Autoencoders von Ozdenizci, Ozan, Wang, Ye, Koike-Akino, Toshiaki, Erdogmus, Deniz

    ISSN: 1948-3554
    Veröffentlicht: IEEE 01.03.2019
    “… ). The proposed approach aims to learn subject-invariant representations by simultaneously training a conditional variational autoencoder (cVAE …”
    Volltext
    Tagungsbericht
  20. 20

    DeepComBat: A Statistically Motivated, Hyperparameter-Robust, Deep Learning Approach to Harmonization of Neuroimaging Data von Hu, Fengling, Lucas, Alfredo, Chen, Andrew A, Coleman, Kyle, Horng, Hannah, Ng, Raymond W S, Tustison, Nicholas J, Davis, Kathryn A, Shou, Haochang, Li, Mingyao, Shinohara, Russell T

    ISSN: 2692-8205, 2692-8205
    Veröffentlicht: United States Cold Spring Harbor Laboratory 24.04.2023
    Veröffentlicht in bioRxiv (24.04.2023)
    “… Neuroimaging data from multiple batches (i.e. acquisition sites, scanner manufacturer, datasets, etc.) are increasingly necessary to gain new insights into the …”
    Volltext
    Journal Article Paper