Suchergebnisse - "Computing methodologies Machine learning Learning paradigms Supervised learning"
-
1
Softermax: Hardware/Software Co-Design of an Efficient Softmax for Transformers
Veröffentlicht: IEEE 05.12.2021Veröffentlicht in 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“… Transformers have transformed the field of natural language processing. Their superior performance is largely attributed to the use of stacked "self-attention" …”
Volltext
Tagungsbericht -
2
PrefixRL: Optimization of Parallel Prefix Circuits using Deep Reinforcement Learning
Veröffentlicht: IEEE 05.12.2021Veröffentlicht in 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“… In this work, we present a reinforcement learning (RL) based approach to designing parallel prefix circuits such as adders or priority encoders that are …”
Volltext
Tagungsbericht -
3
Code Prediction by Feeding Trees to Transformers
ISBN: 1665402962, 9781665402965ISSN: 1558-1225Veröffentlicht: IEEE 01.05.2021Veröffentlicht in Proceedings / International Conference on Software Engineering (01.05.2021)“… Code prediction, more specifically autocomplete, has become an essential feature in modern IDEs. Autocomplete is more effective when the desired next token is …”
Volltext
Tagungsbericht -
4
PreSto: An In-Storage Data Preprocessing System for Training Recommendation Models
Veröffentlicht: IEEE 29.06.2024Veröffentlicht in 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA) (29.06.2024)“… Training recommendation systems (RecSys) faces several challenges as it requires the "data preprocessing" stage to preprocess an ample amount of raw data and …”
Volltext
Tagungsbericht -
5
Dissecting Global Search: A Simple Yet Effective Method to Boost Individual Discrimination Testing and Repair
ISSN: 1558-1225Veröffentlicht: IEEE 26.04.2025Veröffentlicht in Proceedings / International Conference on Software Engineering (26.04.2025)“… Deep Learning (DL) has achieved significant success in socially critical decision-making applications but often exhibits unfair behaviors, raising social …”
Volltext
Tagungsbericht -
6
Code Difference Guided Adversarial Example Generation for Deep Code Models
ISSN: 2643-1572Veröffentlicht: IEEE 11.09.2023Veröffentlicht in IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (11.09.2023)“… Adversarial examples are important to test and enhance the robustness of deep code models. As source code is discrete and has to strictly stick to complex …”
Volltext
Tagungsbericht -
7
Bridging Pre-trained Models and Downstream Tasks for Source Code Understanding
ISSN: 1558-1225Veröffentlicht: ACM 01.05.2022Veröffentlicht in 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE) (01.05.2022)“… With the great success of pre-trained models, the pretrain-then-fine tune paradigm has been widely adopted on downstream tasks for source code understanding …”
Volltext
Tagungsbericht -
8
Neurally-Inspired Hyperdimensional Classification for Efficient and Robust Biosignal Processing
ISSN: 1558-2434Veröffentlicht: ACM 29.10.2022Veröffentlicht in 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) (29.10.2022)“… The biosignals consist of several sensors that collect time series information. Since time series contain temporal dependencies, they are difficult to process …”
Volltext
Tagungsbericht -
9
Online Human Activity Recognition using Low-Power Wearable Devices
ISSN: 1558-2434Veröffentlicht: ACM 05.11.2018Veröffentlicht in 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (05.11.2018)“… Human activity recognition (HAR) has attracted significant research interest due to its applications in health monitoring and patient rehabilitation. Recent …”
Volltext
Tagungsbericht -
10
Augmenting API Documentation with Insights from Stack Overflow
ISSN: 1558-1225Veröffentlicht: ACM 01.05.2016Veröffentlicht in Proceedings / International Conference on Software Engineering (01.05.2016)“… Software developers need access to different kinds of information which is often dispersed among different documentation sources, such as API documentation or …”
Volltext
Tagungsbericht -
11
CodeS: Towards Code Model Generalization Under Distribution Shift
ISSN: 2832-7632Veröffentlicht: IEEE 01.05.2023Veröffentlicht in IEEE/ACM International Conference on Software Engineering: New Ideas and Emerging Technologies Results (Online) (01.05.2023)“… Distribution shift has been a longstanding challenge for the reliable deployment of deep learning (DL) models due to unexpected accuracy degradation. Although …”
Volltext
Tagungsbericht -
12
A Unified DNN Weight Pruning Framework Using Reweighted Optimization Methods
Veröffentlicht: IEEE 05.12.2021Veröffentlicht in 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“… To address the large model size and intensive computation requirement of deep neural networks (DNNs), weight pruning techniques have been proposed and …”
Volltext
Tagungsbericht -
13
An Energy-Aware Approach to Design Self-Adaptive AI-based Applications on the Edge
ISSN: 2643-1572Veröffentlicht: IEEE 11.09.2023Veröffentlicht in IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (11.09.2023)“… The advent of edge devices dedicated to machine learning tasks enabled the execution of AI-based applications that efficiently process and classify the data …”
Volltext
Tagungsbericht -
14
Fairquant: Certifying and Quantifying Fairness of Deep Neural Networks
ISSN: 1558-1225Veröffentlicht: IEEE 26.04.2025Veröffentlicht in Proceedings / International Conference on Software Engineering (26.04.2025)“… We propose a method for formally certifying and quantifying individual fairness of deep neural networks (DNN). Individual fairness guarantees that any two …”
Volltext
Tagungsbericht -
15
Diversity Drives Fairness: Ensemble of Higher Order Mutants for Intersectional Fairness of Machine Learning Software
ISSN: 1558-1225Veröffentlicht: IEEE 26.04.2025Veröffentlicht in Proceedings / International Conference on Software Engineering (26.04.2025)“… Intersectional fairness is a critical requirement for Machine Learning (ML) software, demanding fairness across subgroups defined by multiple protected …”
Volltext
Tagungsbericht -
16
Efficient Transformer Inference with Statically Structured Sparse Attention
Veröffentlicht: IEEE 09.07.2023Veröffentlicht in 2023 60th ACM/IEEE Design Automation Conference (DAC) (09.07.2023)“… Self-attention matrices of Transformers are often highly sparse because the relevant context of each token is typically limited to just a few other tokens in …”
Volltext
Tagungsbericht -
17
FF-INT8: Efficient Forward-Forward DNN Training on Edge Devices with INT8 Precision
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… Backpropagation has been the cornerstone of neural network training for decades, yet its inefficiencies in time and energy consumption limit its suitability …”
Volltext
Tagungsbericht -
18
SSpMV: A Sparsity-aware SpMV Framework Empowered by Multimodal Machine Learning
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… Sparse Matrix-Vector Multiplication (SpMV) is an essential sparse operation in scientific computing and artificial intelligence. Efficiently adapting SpMV …”
Volltext
Tagungsbericht -
19
LMM-IR: Large-Scale Netlist-Aware Multimodal Framework for Static IR-Drop Prediction
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… Static IR drop analysis is a fundamental and critical task in the field of chip design. Nevertheless, this process can be quite time-consuming, potentially …”
Volltext
Tagungsbericht -
20
Enabling On-Tiny-Device Model Personalization via Gradient Condensing and Alternant Partial Update
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… On-device training enables the model to adapt to user-specific data by fine-tuning a pre-trained model locally. As embedded devices become ubiquitous, …”
Volltext
Tagungsbericht

