Suchergebnisse - "Computing methodologies Machine learning Learning paradigms Supervised learning"

  1. 1

    Softermax: Hardware/Software Co-Design of an Efficient Softmax for Transformers von Stevens, Jacob R., Venkatesan, Rangharajan, Dai, Steve, Khailany, Brucek, Raghunathan, Anand

    Veröffentlicht: IEEE 05.12.2021
    “… Transformers have transformed the field of natural language processing. Their superior performance is largely attributed to the use of stacked "self-attention" …”
    Volltext
    Tagungsbericht
  2. 2

    PrefixRL: Optimization of Parallel Prefix Circuits using Deep Reinforcement Learning von Roy, Rajarshi, Raiman, Jonathan, Kant, Neel, Elkin, Ilyas, Kirby, Robert, Siu, Michael, Oberman, Stuart, Godil, Saad, Catanzaro, Bryan

    Veröffentlicht: IEEE 05.12.2021
    “… In this work, we present a reinforcement learning (RL) based approach to designing parallel prefix circuits such as adders or priority encoders that are …”
    Volltext
    Tagungsbericht
  3. 3

    Code Prediction by Feeding Trees to Transformers von Kim, Seohyun, Zhao, Jinman, Tian, Yuchi, Chandra, Satish

    ISBN: 1665402962, 9781665402965
    ISSN: 1558-1225
    Veröffentlicht: IEEE 01.05.2021
    “… Code prediction, more specifically autocomplete, has become an essential feature in modern IDEs. Autocomplete is more effective when the desired next token is …”
    Volltext
    Tagungsbericht
  4. 4

    PreSto: An In-Storage Data Preprocessing System for Training Recommendation Models von Lee, Yunjae, Kim, Hyeseong, Rhu, Minsoo

    Veröffentlicht: IEEE 29.06.2024
    “… Training recommendation systems (RecSys) faces several challenges as it requires the "data preprocessing" stage to preprocess an ample amount of raw data and …”
    Volltext
    Tagungsbericht
  5. 5

    Dissecting Global Search: A Simple Yet Effective Method to Boost Individual Discrimination Testing and Repair von Quan, Lili, Li, Tianlin, Xie, Xiaofei, Chen, Zhenpeng, Chen, Sen, Jiang, Lingxiao, Li, Xiaohong

    ISSN: 1558-1225
    Veröffentlicht: IEEE 26.04.2025
    “… Deep Learning (DL) has achieved significant success in socially critical decision-making applications but often exhibits unfair behaviors, raising social …”
    Volltext
    Tagungsbericht
  6. 6

    Code Difference Guided Adversarial Example Generation for Deep Code Models von Tian, Zhao, Chen, Junjie, Jin, Zhi

    ISSN: 2643-1572
    Veröffentlicht: IEEE 11.09.2023
    “… Adversarial examples are important to test and enhance the robustness of deep code models. As source code is discrete and has to strictly stick to complex …”
    Volltext
    Tagungsbericht
  7. 7

    Bridging Pre-trained Models and Downstream Tasks for Source Code Understanding von Wang, Deze, Jia, Zhouyang, Li, Shanshan, Yu, Yue, Xiong, Yun, Dong, Wei, Liao, Xiangke

    ISSN: 1558-1225
    Veröffentlicht: ACM 01.05.2022
    “… With the great success of pre-trained models, the pretrain-then-fine tune paradigm has been widely adopted on downstream tasks for source code understanding …”
    Volltext
    Tagungsbericht
  8. 8

    Neurally-Inspired Hyperdimensional Classification for Efficient and Robust Biosignal Processing von Ni, Yang, Lesica, Nicholas, Zeng, Fan-Gang, Imani, Mohsen

    ISSN: 1558-2434
    Veröffentlicht: ACM 29.10.2022
    “… The biosignals consist of several sensors that collect time series information. Since time series contain temporal dependencies, they are difficult to process …”
    Volltext
    Tagungsbericht
  9. 9

    Online Human Activity Recognition using Low-Power Wearable Devices von Bhat, Ganapati, Deb, Ranadeep, Chaurasia, Vatika Vardhan, Shill, Holly, Ogras, Umit Y.

    ISSN: 1558-2434
    Veröffentlicht: ACM 05.11.2018
    “… Human activity recognition (HAR) has attracted significant research interest due to its applications in health monitoring and patient rehabilitation. Recent …”
    Volltext
    Tagungsbericht
  10. 10

    Augmenting API Documentation with Insights from Stack Overflow von Treude, Christoph, Robillard, Martin P.

    ISSN: 1558-1225
    Veröffentlicht: ACM 01.05.2016
    “… Software developers need access to different kinds of information which is often dispersed among different documentation sources, such as API documentation or …”
    Volltext
    Tagungsbericht
  11. 11

    CodeS: Towards Code Model Generalization Under Distribution Shift von Hu, Qiang, Guo, Yuejun, Xie, Xiaofei, Cordy, Maxime, Papadakis, Mike, Ma, Lei, Le Traon, Yves

    ISSN: 2832-7632
    Veröffentlicht: IEEE 01.05.2023
    “… Distribution shift has been a longstanding challenge for the reliable deployment of deep learning (DL) models due to unexpected accuracy degradation. Although …”
    Volltext
    Tagungsbericht
  12. 12

    A Unified DNN Weight Pruning Framework Using Reweighted Optimization Methods von Zhang, Tianyun, Ma, Xiaolong, Zhan, Zheng, Zhou, Shanglin, Ding, Caiwen, Fardad, Makan, Wang, Yanzhi

    Veröffentlicht: IEEE 05.12.2021
    “… To address the large model size and intensive computation requirement of deep neural networks (DNNs), weight pruning techniques have been proposed and …”
    Volltext
    Tagungsbericht
  13. 13

    An Energy-Aware Approach to Design Self-Adaptive AI-based Applications on the Edge von Tundo, Alessandro, Mobilio, Marco, Ilager, Shashikant, Brandic, Ivona, Bartocci, Ezio, Mariani, Leonardo

    ISSN: 2643-1572
    Veröffentlicht: IEEE 11.09.2023
    “… The advent of edge devices dedicated to machine learning tasks enabled the execution of AI-based applications that efficiently process and classify the data …”
    Volltext
    Tagungsbericht
  14. 14

    Fairquant: Certifying and Quantifying Fairness of Deep Neural Networks von Kim, Brian Hyeongseok, Wang, Jingbo, Wang, Chao

    ISSN: 1558-1225
    Veröffentlicht: IEEE 26.04.2025
    “… We propose a method for formally certifying and quantifying individual fairness of deep neural networks (DNN). Individual fairness guarantees that any two …”
    Volltext
    Tagungsbericht
  15. 15

    Diversity Drives Fairness: Ensemble of Higher Order Mutants for Intersectional Fairness of Machine Learning Software von Chen, Zhenpeng, Li, Xinyue, Zhang, Jie M., Sarro, Federica, Liu, Yang

    ISSN: 1558-1225
    Veröffentlicht: IEEE 26.04.2025
    “… Intersectional fairness is a critical requirement for Machine Learning (ML) software, demanding fairness across subgroups defined by multiple protected …”
    Volltext
    Tagungsbericht
  16. 16

    Efficient Transformer Inference with Statically Structured Sparse Attention von Dai, Steve, Genc, Hasan, Venkatesan, Rangharajan, Khailany, Brucek

    Veröffentlicht: IEEE 09.07.2023
    “… Self-attention matrices of Transformers are often highly sparse because the relevant context of each token is typically limited to just a few other tokens in …”
    Volltext
    Tagungsbericht
  17. 17

    FF-INT8: Efficient Forward-Forward DNN Training on Edge Devices with INT8 Precision von Ma, Jingxiao, Panda, Priyadarshini, Reda, Sherief

    Veröffentlicht: IEEE 22.06.2025
    “… Backpropagation has been the cornerstone of neural network training for decades, yet its inefficiencies in time and energy consumption limit its suitability …”
    Volltext
    Tagungsbericht
  18. 18

    SSpMV: A Sparsity-aware SpMV Framework Empowered by Multimodal Machine Learning von Lin, Shengle, Liu, Chubo, Ding, Yan, Zhou, Joey Tianyi, Li, Kenli, Yang, Wangdong

    Veröffentlicht: IEEE 22.06.2025
    “… Sparse Matrix-Vector Multiplication (SpMV) is an essential sparse operation in scientific computing and artificial intelligence. Efficiently adapting SpMV …”
    Volltext
    Tagungsbericht
  19. 19

    LMM-IR: Large-Scale Netlist-Aware Multimodal Framework for Static IR-Drop Prediction von Ma, Kai, Wang, Zhen, He, Hongquan, Xu, Qi, Chen, Tinghuan, Geng, Hao

    Veröffentlicht: IEEE 22.06.2025
    “… Static IR drop analysis is a fundamental and critical task in the field of chip design. Nevertheless, this process can be quite time-consuming, potentially …”
    Volltext
    Tagungsbericht
  20. 20

    Enabling On-Tiny-Device Model Personalization via Gradient Condensing and Alternant Partial Update von Jia, Zhenge, Shi, Yiyang, Bao, Zeyu, Wang, Zirui, Pang, Xin, Liu, Huiguo, Duan, Yu, Shen, Zhaoyan, Zhao, Mengying

    Veröffentlicht: IEEE 22.06.2025
    “… On-device training enables the model to adapt to user-specific data by fine-tuning a pre-trained model locally. As embedded devices become ubiquitous, …”
    Volltext
    Tagungsbericht