Výsledky vyhledávání - "Computing methodologies Machine learning Machine learning approaches Neural networks"

  1. 1

    DeepTest: automated testing of deep-neural-network-driven autonomous cars Autor Tian, Yuchi, Pei, Kexin, Jana, Suman, Ray, Baishakhi

    ISBN: 9781450356381, 1450356389
    ISSN: 1558-1225
    Vydáno: New York, NY, USA ACM 27.05.2018
    “…Recent advances in Deep Neural Networks (DNNs) have led to the development of DNN-driven autonomous cars that, using sensors like camera, LiDAR, etc., can…”
    Získat plný text
    Konferenční příspěvek
  2. 2

    Deep Code Comment Generation Autor Hu, Xing, Li, Ge, Xia, Xin, Lo, David, Jin, Zhi

    ISSN: 2643-7171
    Vydáno: ACM 01.05.2018
    “…During software maintenance, code comments help developers comprehend programs and reduce additional time spent on reading and navigating source code…”
    Získat plný text
    Konferenční příspěvek
  3. 3

    Large Language Models for Test-Free Fault Localization Autor Yang, Aidan Z.H., Goues, Claire Le, Martins, Ruben, Hellendoorn, Vincent J.

    ISSN: 1558-1225
    Vydáno: ACM 14.04.2024
    “…Fault Localization (FL) aims to automatically localize buggy lines of code, a key first step in many manual and automatic debugging tasks. Previous FL…”
    Získat plný text
    Konferenční příspěvek
  4. 4

    Natural Attack for Pre-trained Models of Code Autor Yang, Zhou, Shi, Jieke, He, Junda, Lo, David

    ISSN: 1558-1225
    Vydáno: ACM 21.05.2022
    “…Pre-trained models of code have achieved success in many important software engineering tasks. However, these powerful models are vulnerable to adversarial…”
    Získat plný text
    Konferenční příspěvek
  5. 5

    Lost in Translation: A Study of Bugs Introduced by Large Language Models While Translating Code Autor Pan, Rangeet, Ibrahimzada, Ali Reza, Krishna, Rahul, Sankar, Divya, Wassi, Lambert Pougeum, Merler, Michele, Sobolev, Boris, Pavuluri, Raju, Sinha, Saurabh, Jabbarvand, Reyhaneh

    ISSN: 1558-1225
    Vydáno: ACM 14.04.2024
    “…Code translation aims to convert source code from one programming language (PL) to another. Given the promising abilities of large language models (LLMs) in…”
    Získat plný text
    Konferenční příspěvek
  6. 6

    Fuzz Testing based Data Augmentation to Improve Robustness of Deep Neural Networks Autor Gao, Xiang, Saha, Ripon K., Prasad, Mukul R., Roychoudhury, Abhik

    ISSN: 1558-1225
    Vydáno: ACM 01.10.2020
    “…Deep neural networks (DNN) have been shown to be notoriously brittle to small perturbations in their input data. This problem is analogous to the over-fitting…”
    Získat plný text
    Konferenční příspěvek
  7. 7

    Bit-pragmatic deep neural network computing Autor Albericio, Jorge, Delmás, Alberto, Judd, Patrick, Sharify, Sayeh, O'Leary, Gerard, Genov, Roman, Moshovos, Andreas

    ISBN: 1450349528, 9781450349529
    ISSN: 2379-3155
    Vydáno: New York, NY, USA ACM 14.10.2017
    “…Deep Neural Networks expose a high degree of parallelism, making them amenable to highly data parallel architectures. However, data-parallel architectures…”
    Získat plný text
    Konferenční příspěvek
  8. 8

    Watermarking Deep Neural Networks for Embedded Systems Autor Guo, Jia, Potkonjak, Miodrag

    ISSN: 1558-2434
    Vydáno: ACM 01.11.2018
    “…Deep neural networks (DNNs) have become an important tool for bringing intelligence to mobile and embedded devices. The increasingly wide deployment, sharing…”
    Získat plný text
    Konferenční příspěvek
  9. 9

    Dual-side Sparse Tensor Core Autor Wang, Yang, Zhang, Chen, Xie, Zhiqiang, Guo, Cong, Liu, Yunxin, Leng, Jingwen

    ISSN: 2575-713X
    Vydáno: IEEE 01.06.2021
    “…Leveraging sparsity in deep neural network (DNN) models is promising for accelerating model inference. Yet existing GPUs can only leverage the sparsity from…”
    Získat plný text
    Konferenční příspěvek
  10. 10

    Semantically Enhanced Software Traceability Using Deep Learning Techniques Autor Jin Guo, Jinghui Cheng, Cleland-Huang, Jane

    ISSN: 1558-1225
    Vydáno: IEEE 01.05.2017
    “…In most safety-critical domains the need for traceability is prescribed by certifying bodies. Trace links are generally created among requirements, design,…”
    Získat plný text
    Konferenční příspěvek
  11. 11

    Deep learning similarities from different representations of source code Autor Tufano, Michele, Watson, Cody, Bavota, Gabriele, Di Penta, Massimiliano, White, Martin, Poshyvanyk, Denys

    ISBN: 9781450357166, 1450357164
    ISSN: 2574-3864
    Vydáno: New York, NY, USA ACM 28.05.2018
    “…Assessing the similarity between code components plays a pivotal role in a number of Software Engineering (SE) tasks, such as clone detection, impact analysis,…”
    Získat plný text
    Konferenční příspěvek
  12. 12

    A Pixel‐Based Framework for Data‐Driven Clothing Autor Jin, N., Zhu, Y., Geng, Z., Fedkiw, R.

    ISSN: 0167-7055, 1467-8659
    Vydáno: Oxford Blackwell Publishing Ltd 01.12.2020
    Vydáno v Computer graphics forum (01.12.2020)
    “…We propose a novel approach to learning cloth deformation as a function of body pose, recasting the graph‐like triangle mesh data structure into image‐based…”
    Získat plný text
    Journal Article
  13. 13

    Softermax: Hardware/Software Co-Design of an Efficient Softmax for Transformers Autor Stevens, Jacob R., Venkatesan, Rangharajan, Dai, Steve, Khailany, Brucek, Raghunathan, Anand

    Vydáno: IEEE 05.12.2021
    “…Transformers have transformed the field of natural language processing. Their superior performance is largely attributed to the use of stacked "self-attention"…”
    Získat plný text
    Konferenční příspěvek
  14. 14

    Latent Space Subdivision: Stable and Controllable Time Predictions for Fluid Flow Autor Wiewel, S., Kim, B., Azevedo, V. C., Solenthaler, B., Thuerey, N.

    ISSN: 0167-7055, 1467-8659
    Vydáno: Oxford Blackwell Publishing Ltd 01.12.2020
    Vydáno v Computer graphics forum (01.12.2020)
    “…We propose an end‐to‐end trained neural network architecture to robustly predict the complex dynamics of fluid flows with high temporal stability. We focus on…”
    Získat plný text
    Journal Article
  15. 15

    Rescuing memristor-based neuromorphic design with high defects Autor Chenchen Liu, Miao Hu, Strachan, John Paul, Hai Li

    Vydáno: IEEE 01.06.2017
    “…Memristor-based synaptic network has been widely investigated and applied to neuromorphic computing systems for the fast computation and low design cost. As…”
    Získat plný text
    Konferenční příspěvek
  16. 16

    Cats Are Not Fish: Deep Learning Testing Calls for Out-Of-Distribution Awareness Autor Berend, David, Xie, Xiaofei, Ma, Lei, Zhou, Lingjun, Liu, Yang, Xu, Chi, Zhao, Jianjun

    ISSN: 2643-1572
    Vydáno: ACM 01.09.2020
    “…As Deep Learning (DL) is continuously adopted in many industrial applications, its quality and reliability start to raise concerns. Similar to the traditional…”
    Získat plný text
    Konferenční příspěvek
  17. 17

    The Logic of Graph Neural Networks Autor Grohe, Martin

    Vydáno: IEEE 29.06.2021
    “…Graph neural networks (GNNs) are deep learning architectures for machine learning problems on graphs. It has recently been shown that the expressiveness of…”
    Získat plný text
    Konferenční příspěvek
  18. 18

    EditSum: A Retrieve-and-Edit Framework for Source Code Summarization Autor Li, Jia Allen, Li, Yongmin, Li, Ge, Hu, Xing, Xia, Xin, Jin, Zhi

    ISSN: 2643-1572
    Vydáno: IEEE 01.11.2021
    “…Existing studies show that code summaries help developers understand and maintain source code. Unfortunately, these summaries are often missing or outdated in…”
    Získat plný text
    Konferenční příspěvek
  19. 19

    Metamorphic Object Insertion for Testing Object Detection Systems Autor Wang, Shuai, Su, Zhendong

    ISSN: 2643-1572
    Vydáno: ACM 01.09.2020
    “…Recent advances in deep neural networks (DNNs) have led to object detectors (ODs) that can rapidly process pictures or videos, and recognize the objects that…”
    Získat plný text
    Konferenční příspěvek
  20. 20

    Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks Autor Boroumand, Amirali, Ghose, Saugata, Akin, Berkin, Narayanaswami, Ravi, Oliveira, Geraldo F., Ma, Xiaoyu, Shiu, Eric, Mutlu, Onur

    Vydáno: IEEE 01.09.2021
    “…Emerging edge computing platforms often contain machine learning (ML) accelerators that can accelerate inference for a wide range of neural network (NN)…”
    Získat plný text
    Konferenční příspěvek