Výsledky vyhledávání - "Computing methodologies Machine learning Machine learning approaches"

Upřesnit hledání
  1. 1

    PrefixRL: Optimization of Parallel Prefix Circuits using Deep Reinforcement Learning Autor Roy, Rajarshi, Raiman, Jonathan, Kant, Neel, Elkin, Ilyas, Kirby, Robert, Siu, Michael, Oberman, Stuart, Godil, Saad, Catanzaro, Bryan

    Vydáno: IEEE 05.12.2021
    “…In this work, we present a reinforcement learning (RL) based approach to designing parallel prefix circuits such as adders or priority encoders that are…”
    Získat plný text
    Konferenční příspěvek
  2. 2

    Dual-side Sparse Tensor Core Autor Wang, Yang, Zhang, Chen, Xie, Zhiqiang, Guo, Cong, Liu, Yunxin, Leng, Jingwen

    ISSN: 2575-713X
    Vydáno: IEEE 01.06.2021
    “…Leveraging sparsity in deep neural network (DNN) models is promising for accelerating model inference. Yet existing GPUs can only leverage the sparsity from…”
    Získat plný text
    Konferenční příspěvek
  3. 3

    FactorHD: A Hyperdimensional Computing Model for Multi-Object Multi-Class Representation and Factorization Autor Zhou, Yifei, Huang, Xuchu, Ni, Chenyu, Zhou, Min, Yan, Zheyu, Yin, Xunzhao, Zhuo, Cheng

    Vydáno: IEEE 22.06.2025
    “…Neuro-symbolic artificial intelligence (neurosymbolic AI) excels in logical analysis and reasoning. Hyperdimensional Computing (HDC), a promising braininspired…”
    Získat plný text
    Konferenční příspěvek
  4. 4

    QEDCartographer: Automating Formal Verification Using Reward-Free Reinforcement Learning Autor Sanchez-Stern, Alex, Varghese, Abhishek, Kaufman, Zhanna, Zhang, Dylan, Ringer, Talia, Brun, Yuriy

    ISSN: 1558-1225
    Vydáno: IEEE 26.04.2025
    “…Formal verification is a promising method for producing reliable software, but the difficulty of manually writing verification proofs severely limits its…”
    Získat plný text
    Konferenční příspěvek
  5. 5

    Semantically Enhanced Software Traceability Using Deep Learning Techniques Autor Jin Guo, Jinghui Cheng, Cleland-Huang, Jane

    ISSN: 1558-1225
    Vydáno: IEEE 01.05.2017
    “…In most safety-critical domains the need for traceability is prescribed by certifying bodies. Trace links are generally created among requirements, design,…”
    Získat plný text
    Konferenční příspěvek
  6. 6

    GENESYS: A novel evolutionary program synthesis tool with continuous optimization Autor Mandal, Shantanu, Anderson, Todd A, Turek, Javier, Gottschlich, Justin, Muzahid, Abdullah

    ISSN: 2836-8924, 2836-8924
    Vydáno: 13.11.2025
    “…Automatic software generation based on some specification is known as program synthesis. Most existing approaches formulate program synthesis as a search…”
    Získat plný text
    Journal Article
  7. 7

    Diversity Drives Fairness: Ensemble of Higher Order Mutants for Intersectional Fairness of Machine Learning Software Autor Chen, Zhenpeng, Li, Xinyue, Zhang, Jie M., Sarro, Federica, Liu, Yang

    ISSN: 1558-1225
    Vydáno: IEEE 26.04.2025
    “…Intersectional fairness is a critical requirement for Machine Learning (ML) software, demanding fairness across subgroups defined by multiple protected…”
    Získat plný text
    Konferenční příspěvek
  8. 8

    Softermax: Hardware/Software Co-Design of an Efficient Softmax for Transformers Autor Stevens, Jacob R., Venkatesan, Rangharajan, Dai, Steve, Khailany, Brucek, Raghunathan, Anand

    Vydáno: IEEE 05.12.2021
    “…Transformers have transformed the field of natural language processing. Their superior performance is largely attributed to the use of stacked "self-attention"…”
    Získat plný text
    Konferenční příspěvek
  9. 9

    The Devil is in the Tails: How Long-Tailed Code Distributions Impact Large Language Models Autor Zhout, Xin, Kim, Kisub, Xu, Bowen, Liu, Jiakun, Han, DongGyun, Lo, David

    ISSN: 2643-1572
    Vydáno: IEEE 11.09.2023
    “…Learning-based techniques, especially advanced Large Language Models (LLMs) for code, have gained considerable popularity in various software engineering (SE)…”
    Získat plný text
    Konferenční příspěvek
  10. 10

    An Extension to Basis-Hypervectors for Learning from Circular Data in Hyperdimensional Computing Autor Nunes, Igor, Heddes, Mike, Givargis, Tony, Nicolau, Alexandru

    Vydáno: IEEE 09.07.2023
    “…Hyperdimensional Computing (HDC) is a computation framework based on random vector spaces, particularly useful for machine learning in resource-constrained…”
    Získat plný text
    Konferenční příspěvek
  11. 11

    Code Difference Guided Adversarial Example Generation for Deep Code Models Autor Tian, Zhao, Chen, Junjie, Jin, Zhi

    ISSN: 2643-1572
    Vydáno: IEEE 11.09.2023
    “…Adversarial examples are important to test and enhance the robustness of deep code models. As source code is discrete and has to strictly stick to complex…”
    Získat plný text
    Konferenční příspěvek
  12. 12

    Rescuing memristor-based neuromorphic design with high defects Autor Chenchen Liu, Miao Hu, Strachan, John Paul, Hai Li

    Vydáno: IEEE 01.06.2017
    “…Memristor-based synaptic network has been widely investigated and applied to neuromorphic computing systems for the fast computation and low design cost. As…”
    Získat plný text
    Konferenční příspěvek
  13. 13

    PertNAS: Architectural Perturbations for Memory-Efficient Neural Architecture Search Autor Ahmad, Afzal, Xie, Zhiyao, Zhang, Wei

    Vydáno: IEEE 09.07.2023
    “…Differentiable Neural Architecture Search (NAS) relies on aggressive weight-sharing to reduce its search cost. This leads to GPU-memory bottlenecks that hamper…”
    Získat plný text
    Konferenční příspěvek
  14. 14

    The Logic of Graph Neural Networks Autor Grohe, Martin

    Vydáno: IEEE 29.06.2021
    “…Graph neural networks (GNNs) are deep learning architectures for machine learning problems on graphs. It has recently been shown that the expressiveness of…”
    Získat plný text
    Konferenční příspěvek
  15. 15

    EditSum: A Retrieve-and-Edit Framework for Source Code Summarization Autor Li, Jia Allen, Li, Yongmin, Li, Ge, Hu, Xing, Xia, Xin, Jin, Zhi

    ISSN: 2643-1572
    Vydáno: IEEE 01.11.2021
    “…Existing studies show that code summaries help developers understand and maintain source code. Unfortunately, these summaries are often missing or outdated in…”
    Získat plný text
    Konferenční příspěvek
  16. 16

    Making Fair ML Software using Trustworthy Explanation Autor Chakraborty, Joymallya, Peng, Kewen, Menzies, Tim

    ISSN: 2643-1572
    Vydáno: ACM 01.09.2020
    “…Machine learning software is being used in many applications (finance, hiring, admissions, criminal justice) having huge social impact. But sometimes the…”
    Získat plný text
    Konferenční příspěvek
  17. 17

    Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks Autor Boroumand, Amirali, Ghose, Saugata, Akin, Berkin, Narayanaswami, Ravi, Oliveira, Geraldo F., Ma, Xiaoyu, Shiu, Eric, Mutlu, Onur

    Vydáno: IEEE 01.09.2021
    “…Emerging edge computing platforms often contain machine learning (ML) accelerators that can accelerate inference for a wide range of neural network (NN)…”
    Získat plný text
    Konferenční příspěvek
  18. 18

    UniGenCoder: Merging SEQ2SEQ and SEQ2TREE Paradigms for Unified Code Generation Autor Shao, Liangying, Yan, Yanfu, Poshyvanyk, Denys, Su, Jinsong

    ISSN: 2832-7632
    Vydáno: IEEE 27.04.2025
    “…Deep learning-based code generation has completely transformed the way developers write programs today. Existing approaches to code generation have focused…”
    Získat plný text
    Konferenční příspěvek
  19. 19

    MAGIKA: AI-Powered Content-Type Detection Autor Fratantonio, Yanick, Invernizzi, Luca, Farah, Loua, Thomas, Kurt, Zhang, Marina, Albertini, Ange, Galilee, Francois, Metitieri, Giancarlo, Cretin, Julien, Petit-Bianco, Alex, Tao, David, Bursztein, Elie

    ISSN: 1558-1225
    Vydáno: IEEE 26.04.2025
    “…The task of content-type detection-which entails identifying the data encoded in an arbitrary byte sequence-is critical for operating systems, development,…”
    Získat plný text
    Konferenční příspěvek
  20. 20

    Fast and Efficient Information Transmission with Burst Spikes in Deep Spiking Neural Networks Autor Park, Seongsik, Kim, Seijoon, Choe, Hyeokjun, Yoon, Sungroh

    Vydáno: ACM 01.06.2019
    “…Spiking neural networks (SNNs) are considered as one of the most promising artificial neural networks due to their energy-efficient computing capability…”
    Získat plný text
    Konferenční příspěvek