Výsledky vyhledávání - "Computing methodologies Machine learning Learning settings Learning from demonstrations"

  • Zobrazuji výsledky 1 - 14 z 14
Upřesnit hledání
  1. 1

    VMP: Versatile Motion Priors for Robustly Tracking Motion on Physical Characters Autor Serifi, Agon, Grandia, Ruben, Knoop, Espen, Gross, Markus, Bächer, Moritz

    ISSN: 0167-7055, 1467-8659
    Vydáno: Oxford Blackwell Publishing Ltd 01.12.2024
    Vydáno v Computer graphics forum (01.12.2024)
    “…Recent progress in physics‐based character control has made it possible to learn policies from unstructured motion data. However, it remains challenging to…”
    Získat plný text
    Journal Article
  2. 2

    Learning to Move Like Professional Counter‐Strike Players Autor Durst, D., Xie, F., Sarukkai, V., Shacklett, B., Frosio, I., Tessler, C., Kim, J., Taylor, C., Bernstein, G., Choudhury, S., Hanrahan, P., Fatahalian, K.

    ISSN: 0167-7055, 1467-8659
    Vydáno: Oxford Blackwell Publishing Ltd 01.12.2024
    Vydáno v Computer graphics forum (01.12.2024)
    “…In multiplayer, first‐person shooter games like Counter‐Strike: Global Offensive (CS:GO), coordinated movement is a critical component of high‐level strategic…”
    Získat plný text
    Journal Article
  3. 3

    Learning and Repair of Deep Reinforcement Learning Policies from Fuzz-Testing Data Autor Tappler, Martin, Pferscher, Andrea, Aichernig, Bernhard K., Konighofer, Bettina

    ISSN: 1558-1225
    Vydáno: ACM 14.04.2024
    “…Reinforcement learning from demonstrations (RLfD) is a promising approach to improve the exploration efficiency of reinforcement learning (RL) by learning from…”
    Získat plný text
    Konferenční příspěvek
  4. 4

    Feature Expansive Reward Learning: Rethinking Human Input Autor Bobu, Andreea, Wiggert, Marius, Tomlin, Claire, Dragan, Anca D.

    ISSN: 2167-2148
    Vydáno: ACM 09.03.2021
    “…When a person is not satisfied with how a robot performs a task, they can intervene to correct it. Reward learning methods enable the robot to adapt its reward…”
    Získat plný text
    Konferenční příspěvek
  5. 5

    Aligning Human and Robot Representations Autor Bobu, Andreea, Peng, Andi, Agrawal, Pulkit, Shah, Julie A., Dragan, Anca D.

    Vydáno: ACM 11.03.2024
    “…To act in the world, robots rely on a representation of salient task aspects: for example, to carry a coffee mug, a robot may consider movement efficiency or…”
    Získat plný text
    Konferenční příspěvek
  6. 6

    Joint Goal and Strategy Inference across Heterogeneous Demonstrators via Reward Network Distillation Autor Chen, Letian, Paleja, Rohan, Ghuy, Muyleng, Gombolay, Matthew

    ISBN: 1450367461, 9781450367462
    ISSN: 2167-2148
    Vydáno: New York, NY, USA ACM 09.03.2020
    “…Reinforcement learning (RL) has achieved tremendous success as a general framework for learning how to make decisions. However, this success relies on the…”
    Získat plný text
    Konferenční příspěvek
  7. 7

    Autonomous Assessment of Demonstration Sufficiency via Bayesian Inverse Reinforcement Learning Autor Trinh, Tu, Chen, Haoyu, Brown, Daniel S.

    Vydáno: ACM 11.03.2024
    “…We examine the problem of determining demonstration sufficiency: how can a robot self-assess whether it has received enough demonstrations from an expert to…”
    Získat plný text
    Konferenční příspěvek
  8. 8

    Enhancing Safety in Learning from Demonstration Algorithms via Control Barrier Function Shielding Autor Yang, Yue, Chen, Letian, Zaidi, Zulfiqar, van Waveren, Sanne, Krishna, Arjun, Gombolay, Matthew

    Vydáno: ACM 11.03.2024
    “…Learning from Demonstration (LfD) is a powerful method for non-roboticists end-users to teach robots new tasks, enabling them to customize the robot behavior…”
    Získat plný text
    Konferenční příspěvek
  9. 9

    Zero-Shot Learning to Enable Error Awareness in Data-Driven HRI Autor Ravishankar, Joshua, Doering, Malcolm, Kanda, Takayuki

    Vydáno: ACM 11.03.2024
    “…Data-driven social imitation learning is a minimally-supervised approach to generating robot behaviors for human-robot interaction (HRI). However, this type of…”
    Získat plný text
    Konferenční příspěvek
  10. 10

    Preference-Conditioned Language-Guided Abstraction Autor Peng, Andi, Bobu, Andreea, Li, Belinda Z., Sumers, Theodore R., Sucholutsky, Ilia, Kumar, Nishanth, Griffiths, Thomas L., Shah, Julie A.

    Vydáno: ACM 11.03.2024
    “…Learning from demonstrations is a common way for users to teach robots, but it is prone to spurious feature correlations. Recent work constructs state…”
    Získat plný text
    Konferenční příspěvek
  11. 11

    Navigational Instruction Generation as Inverse Reinforcement Learning with Neural Machine Translation Autor Daniele, Andrea F., Bansal, Mohit, Walter, Matthew R.

    ISBN: 9781450343367, 1450343368
    ISSN: 2167-2148
    Vydáno: New York, NY, USA ACM 06.03.2017
    “…Modern robotics applications that involve human-robot interaction require robots to be able to communicate with humans seamlessly and effectively. Natural…”
    Získat plný text
    Konferenční příspěvek
  12. 12

    Track-Assignment Detailed Routing Using Attention-based Policy Model With Supervision Autor Liao, Haiguang, Dong, Qingyi, Qi, Weiyi, Fallon, Elias, Kara, Levent Burak

    Vydáno: ACM 16.11.2020
    “…Detailed routing is one of the most critical steps in analog circuit design. Complete routing has become increasingly more challenging in advanced node analog…”
    Získat plný text
    Konferenční příspěvek
  13. 13

    Autonomously Learning One-To-Many Social Interaction Logic from Human-Human Interaction Data Autor Nanavati, Amal, Doering, Malcolm, Brščić, Dražen, Kanda, Takayuki

    ISBN: 1450367461, 9781450367462
    ISSN: 2167-2148
    Vydáno: New York, NY, USA ACM 09.03.2020
    “…We envision a future where service robots autonomously learn how to interact with humans directly from human-human interaction data, without any manual…”
    Získat plný text
    Konferenční příspěvek
  14. 14

    State-Aware Configuration Detection for Augmented Reality Step-by-Step Tutorials Autor Stanescu, Ana, Mohr, Peter, Kozinski, Mateusz, Mori, Shohei, Schmalstieg, Dieter, Kalkofen, Denis

    ISSN: 2473-0726
    Vydáno: IEEE 16.10.2023
    “…Presenting tutorials in augmented reality is a compelling application area, but previous attempts have been limited to objects with only a small numbers of…”
    Získat plný text
    Konferenční příspěvek