Suchergebnisse - "Computing methodologies Machine learning Learning paradigms Unsupervised learning"
Andere Suchmöglichkeiten:
- "Computing methodologies Machine learning Learning paradigms Unsupervised learning" »
-
1
Twin Graph-Based Anomaly Detection via Attentive Multi-Modal Learning for Microservice System
ISSN: 2643-1572Veröffentlicht: IEEE 11.09.2023Veröffentlicht in IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (11.09.2023)“… Microservice architecture has sprung up over recent years for managing enterprise applications, due to its ability to independently deploy and scale services …”
Volltext
Tagungsbericht -
2
Multiple-Boundary Clustering and Prioritization to Promote Neural Network Retraining
ISSN: 2643-1572Veröffentlicht: ACM 01.09.2020Veröffentlicht in 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE) (01.09.2020)“… With the increasing application of deep learning (DL) models in many safety-critical scenarios, effective and efficient DL testing techniques are much in …”
Volltext
Tagungsbericht -
3
Weakly-Supervised Log-Based Anomaly Detection with Inexact Labels via Multi-Instance Learning
ISSN: 1558-1225Veröffentlicht: IEEE 26.04.2025Veröffentlicht in Proceedings / International Conference on Software Engineering (26.04.2025)“… Log-based anomaly detection is essential for maintaining software availability. However, existing log-based anomaly detection approaches heavily rely on …”
Volltext
Tagungsbericht -
4
Enabling On-Device Self-Supervised Contrastive Learning with Selective Data Contrast
Veröffentlicht: IEEE 05.12.2021Veröffentlicht in 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“… After a model is deployed on edge devices, it is desirable for these devices to learn from unlabeled data to continuously improve accuracy. Contrastive …”
Volltext
Tagungsbericht -
5
Segmented Angular Pre-Processing for Accurate and Efficient In-Memory Vector Similarity Search
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… Vector similarity search (VSS) is a fundamental operation in modern AI applications, including few-shot learning (FSL) and approximate nearest neighbor search …”
Volltext
Tagungsbericht -
6
LogOnline: A Semi-Supervised Log-Based Anomaly Detector Aided with Online Learning Mechanism
ISSN: 2643-1572Veröffentlicht: IEEE 11.09.2023Veröffentlicht in IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (11.09.2023)“… Logs are prevalent in modern cloud systems and serve as a valuable source of information for system maintenance. Over the years, a lot of research and …”
Volltext
Tagungsbericht -
7
Maat: Performance Metric Anomaly Anticipation for Cloud Services with Conditional Diffusion
ISSN: 2643-1572Veröffentlicht: IEEE 11.09.2023Veröffentlicht in IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (11.09.2023)“… Ensuring the reliability and user satisfaction of cloud services necessitates prompt anomaly detection followed by diagnosis. Existing techniques for anomaly …”
Volltext
Tagungsbericht -
8
AutoLog: A Log Sequence Synthesis Framework for Anomaly Detection
ISSN: 2643-1572Veröffentlicht: IEEE 11.09.2023Veröffentlicht in IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (11.09.2023)“… The rapid progress of modern computing systems has led to a growing interest in informative run-time logs. Various log-based anomaly detection techniques have …”
Volltext
Tagungsbericht -
9
1+1>2: Integrating Deep Code Behaviors with Metadata Features for Malicious PyPI Package Detection
ISSN: 2643-1572Veröffentlicht: ACM 27.10.2024Veröffentlicht in IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (27.10.2024)“… PyPI, the official package registry for Python, has seen a surge in the number of malicious package uploads in recent years. Prior studies have demonstrated …”
Volltext
Tagungsbericht -
10
MalWuKong: Towards Fast, Accurate, and Multilingual Detection of Malicious Code Poisoning in OSS Supply Chains
ISSN: 2643-1572Veröffentlicht: IEEE 11.09.2023Veröffentlicht in IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (11.09.2023)“… In the face of increased threats within software registries and management systems, we address the critical need for effective malicious code detection. In …”
Volltext
Tagungsbericht -
11
Quorum: Zero-Training Unsupervised Anomaly Detection using Quantum Autoencoders
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… Detecting mission-critical anomalous events and data is a crucial challenge across various industries, including finance, healthcare, and energy. Quantum …”
Volltext
Tagungsbericht -
12
Detecting and Explaining Anomalies Caused by Web Tamper Attacks via Building Consistency-based Normality
ISSN: 2643-1572Veröffentlicht: ACM 27.10.2024Veröffentlicht in IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (27.10.2024)“… Web applications are crucial infrastructures in the modern society, which have high demand of reliability and security. However, their frontend can be …”
Volltext
Tagungsbericht -
13
BDefects4NN: A Backdoor Defect Database for Controlled Localization Studies in Neural Networks
ISSN: 1558-1225Veröffentlicht: IEEE 26.04.2025Veröffentlicht in Proceedings / International Conference on Software Engineering (26.04.2025)“… Pre-trained large deep learning models are now serving as the dominant component for downstream middleware users and have revolutionized the learning paradigm, …”
Volltext
Tagungsbericht -
14
How to Accurately and Privately Identify Anomalies
ISSN: 1543-7221, 1543-7221Veröffentlicht: United States 01.11.2019Veröffentlicht in Proceedings of the ... ACM Conference on Computer and Communications Security (01.11.2019)“… Identifying anomalies in data is central to the advancement of science, national security, and finance. However, privacy concerns restrict our ability to …”
Weitere Angaben
Journal Article -
15
CND-IDS: Continual Novelty Detection for Intrusion Detection Systems
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… Intrusion detection systems (IDS) play a crucial role in IoT and network security by monitoring system data and alerting to suspicious activities. Machine …”
Volltext
Tagungsbericht -
16
UniGenCoder: Merging SEQ2SEQ and SEQ2TREE Paradigms for Unified Code Generation
ISSN: 2832-7632Veröffentlicht: IEEE 27.04.2025Veröffentlicht in IEEE/ACM International Conference on Software Engineering: New Ideas and Emerging Technologies Results (Online) (27.04.2025)“… Deep learning-based code generation has completely transformed the way developers write programs today. Existing approaches to code generation have focused …”
Volltext
Tagungsbericht -
17
Scalable Community Detection Using Quantum Hamiltonian Descent and QUBO Formulation
Veröffentlicht: IEEE 22.06.2025Veröffentlicht in 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“… We present a quantum-inspired algorithm that utilizes Quantum Hamiltonian Descent (QHD) for efficient community detection. Our approach reformulates the …”
Volltext
Tagungsbericht -
18
A vision on a methodology for the application of an Intrusion Detection System for satellites
ISSN: 2643-1572Veröffentlicht: ACM 27.10.2024Veröffentlicht in IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (27.10.2024)“… The security of satellites has become critical in recent years due to their important role in modern society. However, numerous challenges, including limited …”
Volltext
Tagungsbericht -
19
TacDroid: Detection of Illicit Apps Through Hybrid Analysis of UI-Based Transition Graphs
ISSN: 1558-1225Veröffentlicht: IEEE 26.04.2025Veröffentlicht in Proceedings / International Conference on Software Engineering (26.04.2025)“… Illicit apps have emerged as a thriving underground industry, driven by their substantial profitability. These apps either offer users restricted services …”
Volltext
Tagungsbericht -
20
Towards More Trustworthy Deep Code Models by Enabling Out-of-Distribution Detection
ISSN: 1558-1225Veröffentlicht: IEEE 26.04.2025Veröffentlicht in Proceedings / International Conference on Software Engineering (26.04.2025)“… Numerous machine learning (ML) models have been developed, including those for software engineering (SE) tasks, under the assumption that training and testing …”
Volltext
Tagungsbericht