Suchergebnisse - "Computing methodologies Machine learning Learning paradigms Unsupervised learning"

Andere Suchmöglichkeiten:

  1. 1

    Twin Graph-Based Anomaly Detection via Attentive Multi-Modal Learning for Microservice System von Huang, Jun, Yang, Yang, Yu, Hang, Li, Jianguo, Zheng, Xiao

    ISSN: 2643-1572
    Veröffentlicht: IEEE 11.09.2023
    “… Microservice architecture has sprung up over recent years for managing enterprise applications, due to its ability to independently deploy and scale services …”
    Volltext
    Tagungsbericht
  2. 2

    Multiple-Boundary Clustering and Prioritization to Promote Neural Network Retraining von Shen, Weijun, Li, Yanhui, Chen, Lin, Han, Yuanlei, Zhou, Yuming, Xu, Baowen

    ISSN: 2643-1572
    Veröffentlicht: ACM 01.09.2020
    “… With the increasing application of deep learning (DL) models in many safety-critical scenarios, effective and efficient DL testing techniques are much in …”
    Volltext
    Tagungsbericht
  3. 3

    Weakly-Supervised Log-Based Anomaly Detection with Inexact Labels via Multi-Instance Learning von He, Minghua, Jia, Tong, Duan, Chiming, Cai, Huaqian, Li, Ying, Huang, Gang

    ISSN: 1558-1225
    Veröffentlicht: IEEE 26.04.2025
    “… Log-based anomaly detection is essential for maintaining software availability. However, existing log-based anomaly detection approaches heavily rely on …”
    Volltext
    Tagungsbericht
  4. 4

    Enabling On-Device Self-Supervised Contrastive Learning with Selective Data Contrast von Wu, Yawen, Wang, Zhepeng, Zeng, Dewen, Shi, Yiyu, Hu, Jingtong

    Veröffentlicht: IEEE 05.12.2021
    “… After a model is deployed on edge devices, it is desirable for these devices to learn from unlabeled data to continuously improve accuracy. Contrastive …”
    Volltext
    Tagungsbericht
  5. 5

    Segmented Angular Pre-Processing for Accurate and Efficient In-Memory Vector Similarity Search von Huang, Chi-Tse, Wang, Jen-Chieh, Cheng, Hsiang-Yun, Wu, An-Yeu Andy

    Veröffentlicht: IEEE 22.06.2025
    “… Vector similarity search (VSS) is a fundamental operation in modern AI applications, including few-shot learning (FSL) and approximate nearest neighbor search …”
    Volltext
    Tagungsbericht
  6. 6

    LogOnline: A Semi-Supervised Log-Based Anomaly Detector Aided with Online Learning Mechanism von Wang, Xuheng, Song, Jiaxing, Zhang, Xu, Tang, Junshu, Gao, Weihe, Lin, Qingwei

    ISSN: 2643-1572
    Veröffentlicht: IEEE 11.09.2023
    “… Logs are prevalent in modern cloud systems and serve as a valuable source of information for system maintenance. Over the years, a lot of research and …”
    Volltext
    Tagungsbericht
  7. 7

    Maat: Performance Metric Anomaly Anticipation for Cloud Services with Conditional Diffusion von Lee, Cheryl, Yang, Tianyi, Chen, Zhuangbin, Su, Yuxin, Lyu, Michael R.

    ISSN: 2643-1572
    Veröffentlicht: IEEE 11.09.2023
    “… Ensuring the reliability and user satisfaction of cloud services necessitates prompt anomaly detection followed by diagnosis. Existing techniques for anomaly …”
    Volltext
    Tagungsbericht
  8. 8

    AutoLog: A Log Sequence Synthesis Framework for Anomaly Detection von Huo, Yintong, Li, Yichen, Su, Yuxin, He, Pinjia, Xie, Zifan, Lyu, Michael R.

    ISSN: 2643-1572
    Veröffentlicht: IEEE 11.09.2023
    “… The rapid progress of modern computing systems has led to a growing interest in informative run-time logs. Various log-based anomaly detection techniques have …”
    Volltext
    Tagungsbericht
  9. 9

    1+1>2: Integrating Deep Code Behaviors with Metadata Features for Malicious PyPI Package Detection von Sun, Xiaobing, Gao, Xingan, Cao, Sicong, Bo, Lili, Wu, Xiaoxue, Huang, Kaifeng

    ISSN: 2643-1572
    Veröffentlicht: ACM 27.10.2024
    “… PyPI, the official package registry for Python, has seen a surge in the number of malicious package uploads in recent years. Prior studies have demonstrated …”
    Volltext
    Tagungsbericht
  10. 10

    MalWuKong: Towards Fast, Accurate, and Multilingual Detection of Malicious Code Poisoning in OSS Supply Chains von Li, Ningke, Wang, Shenao, Feng, Mingxi, Wang, Kailong, Wang, Meizhen, Wang, Haoyu

    ISSN: 2643-1572
    Veröffentlicht: IEEE 11.09.2023
    “… In the face of increased threats within software registries and management systems, we address the critical need for effective malicious code detection. In …”
    Volltext
    Tagungsbericht
  11. 11

    Quorum: Zero-Training Unsupervised Anomaly Detection using Quantum Autoencoders von Ludmir, Jason Zev, Rebello, Sophia, Ruiz, Jacob, Patel, Tirthak

    Veröffentlicht: IEEE 22.06.2025
    “… Detecting mission-critical anomalous events and data is a crucial challenge across various industries, including finance, healthcare, and energy. Quantum …”
    Volltext
    Tagungsbericht
  12. 12

    Detecting and Explaining Anomalies Caused by Web Tamper Attacks via Building Consistency-based Normality von Liao, Yifan, Xu, Ming, Lin, Yun, Teoh, Xiwen, Xie, Xiaofei, Feng, Ruitao, Liauw, Frank, Zhang, Hongyu, Dong, Jin Song

    ISSN: 2643-1572
    Veröffentlicht: ACM 27.10.2024
    “… Web applications are crucial infrastructures in the modern society, which have high demand of reliability and security. However, their frontend can be …”
    Volltext
    Tagungsbericht
  13. 13

    BDefects4NN: A Backdoor Defect Database for Controlled Localization Studies in Neural Networks von Xiao, Yisong, Liu, Aishan, Zhang, Xinwei, Zhang, Tianyuan, Li, Tianlin, Liang, Siyuan, Liu, Xianglong, Liu, Yang, Tao, Dacheng

    ISSN: 1558-1225
    Veröffentlicht: IEEE 26.04.2025
    “… Pre-trained large deep learning models are now serving as the dominant component for downstream middleware users and have revolutionized the learning paradigm, …”
    Volltext
    Tagungsbericht
  14. 14

    How to Accurately and Privately Identify Anomalies von Asif, Hafiz, Papakonstantinou, Periklis A, Vaidya, Jaideep

    ISSN: 1543-7221, 1543-7221
    Veröffentlicht: United States 01.11.2019
    “… Identifying anomalies in data is central to the advancement of science, national security, and finance. However, privacy concerns restrict our ability to …”
    Weitere Angaben
    Journal Article
  15. 15

    CND-IDS: Continual Novelty Detection for Intrusion Detection Systems von Fuhrman, Sean, Gungor, Onat, Rosing, Tajana

    Veröffentlicht: IEEE 22.06.2025
    “… Intrusion detection systems (IDS) play a crucial role in IoT and network security by monitoring system data and alerting to suspicious activities. Machine …”
    Volltext
    Tagungsbericht
  16. 16

    UniGenCoder: Merging SEQ2SEQ and SEQ2TREE Paradigms for Unified Code Generation von Shao, Liangying, Yan, Yanfu, Poshyvanyk, Denys, Su, Jinsong

    ISSN: 2832-7632
    Veröffentlicht: IEEE 27.04.2025
    “… Deep learning-based code generation has completely transformed the way developers write programs today. Existing approaches to code generation have focused …”
    Volltext
    Tagungsbericht
  17. 17

    Scalable Community Detection Using Quantum Hamiltonian Descent and QUBO Formulation von Cheng, Jinglei, Zhou, Ruilin, Gan, Yuhang, Qian, Chen, Liu, Junyu

    Veröffentlicht: IEEE 22.06.2025
    “… We present a quantum-inspired algorithm that utilizes Quantum Hamiltonian Descent (QHD) for efficient community detection. Our approach reformulates the …”
    Volltext
    Tagungsbericht
  18. 18

    A vision on a methodology for the application of an Intrusion Detection System for satellites von Gios, Sebastien, Van Ouytsel, Charles-Henry Bertrand, Caribe, Mark Diamantino, Legay, Axel

    ISSN: 2643-1572
    Veröffentlicht: ACM 27.10.2024
    “… The security of satellites has become critical in recent years due to their important role in modern society. However, numerous challenges, including limited …”
    Volltext
    Tagungsbericht
  19. 19

    TacDroid: Detection of Illicit Apps Through Hybrid Analysis of UI-Based Transition Graphs von Lu, Yanchen, Lin, Hongyu, He, Zehua, Xu, Haitao, Li, Zhao, Hao, Shuai, Wang, Liu, Wang, Haoyu, Ren, Kui

    ISSN: 1558-1225
    Veröffentlicht: IEEE 26.04.2025
    “… Illicit apps have emerged as a thriving underground industry, driven by their substantial profitability. These apps either offer users restricted services …”
    Volltext
    Tagungsbericht
  20. 20

    Towards More Trustworthy Deep Code Models by Enabling Out-of-Distribution Detection von Yan, Yanfu, Duong, Viet, Shao, Huajie, Poshyvanyk, Denys

    ISSN: 1558-1225
    Veröffentlicht: IEEE 26.04.2025
    “… Numerous machine learning (ML) models have been developed, including those for software engineering (SE) tasks, under the assumption that training and testing …”
    Volltext
    Tagungsbericht