Výsledky vyhľadávania - "Computing methodologies Machine learning Learning paradigms Supervised learning"

  1. 1

    Softermax: Hardware/Software Co-Design of an Efficient Softmax for Transformers Autor Stevens, Jacob R., Venkatesan, Rangharajan, Dai, Steve, Khailany, Brucek, Raghunathan, Anand

    Vydavateľské údaje: IEEE 05.12.2021
    “…Transformers have transformed the field of natural language processing. Their superior performance is largely attributed to the use of stacked "self-attention"…”
    Získať plný text
    Konferenčný príspevok..
  2. 2

    PrefixRL: Optimization of Parallel Prefix Circuits using Deep Reinforcement Learning Autor Roy, Rajarshi, Raiman, Jonathan, Kant, Neel, Elkin, Ilyas, Kirby, Robert, Siu, Michael, Oberman, Stuart, Godil, Saad, Catanzaro, Bryan

    Vydavateľské údaje: IEEE 05.12.2021
    “…In this work, we present a reinforcement learning (RL) based approach to designing parallel prefix circuits such as adders or priority encoders that are…”
    Získať plný text
    Konferenčný príspevok..
  3. 3

    Code Prediction by Feeding Trees to Transformers Autor Kim, Seohyun, Zhao, Jinman, Tian, Yuchi, Chandra, Satish

    ISBN: 1665402962, 9781665402965
    ISSN: 1558-1225
    Vydavateľské údaje: IEEE 01.05.2021
    “…Code prediction, more specifically autocomplete, has become an essential feature in modern IDEs. Autocomplete is more effective when the desired next token is…”
    Získať plný text
    Konferenčný príspevok..
  4. 4

    PreSto: An In-Storage Data Preprocessing System for Training Recommendation Models Autor Lee, Yunjae, Kim, Hyeseong, Rhu, Minsoo

    Vydavateľské údaje: IEEE 29.06.2024
    “…Training recommendation systems (RecSys) faces several challenges as it requires the "data preprocessing" stage to preprocess an ample amount of raw data and…”
    Získať plný text
    Konferenčný príspevok..
  5. 5

    Dissecting Global Search: A Simple Yet Effective Method to Boost Individual Discrimination Testing and Repair Autor Quan, Lili, Li, Tianlin, Xie, Xiaofei, Chen, Zhenpeng, Chen, Sen, Jiang, Lingxiao, Li, Xiaohong

    ISSN: 1558-1225
    Vydavateľské údaje: IEEE 26.04.2025
    “…Deep Learning (DL) has achieved significant success in socially critical decision-making applications but often exhibits unfair behaviors, raising social…”
    Získať plný text
    Konferenčný príspevok..
  6. 6

    Code Difference Guided Adversarial Example Generation for Deep Code Models Autor Tian, Zhao, Chen, Junjie, Jin, Zhi

    ISSN: 2643-1572
    Vydavateľské údaje: IEEE 11.09.2023
    “…Adversarial examples are important to test and enhance the robustness of deep code models. As source code is discrete and has to strictly stick to complex…”
    Získať plný text
    Konferenčný príspevok..
  7. 7

    Bridging Pre-trained Models and Downstream Tasks for Source Code Understanding Autor Wang, Deze, Jia, Zhouyang, Li, Shanshan, Yu, Yue, Xiong, Yun, Dong, Wei, Liao, Xiangke

    ISSN: 1558-1225
    Vydavateľské údaje: ACM 01.05.2022
    “…With the great success of pre-trained models, the pretrain-then-fine tune paradigm has been widely adopted on downstream tasks for source code understanding…”
    Získať plný text
    Konferenčný príspevok..
  8. 8

    Neurally-Inspired Hyperdimensional Classification for Efficient and Robust Biosignal Processing Autor Ni, Yang, Lesica, Nicholas, Zeng, Fan-Gang, Imani, Mohsen

    ISSN: 1558-2434
    Vydavateľské údaje: ACM 29.10.2022
    “…The biosignals consist of several sensors that collect time series information. Since time series contain temporal dependencies, they are difficult to process…”
    Získať plný text
    Konferenčný príspevok..
  9. 9

    Online Human Activity Recognition using Low-Power Wearable Devices Autor Bhat, Ganapati, Deb, Ranadeep, Chaurasia, Vatika Vardhan, Shill, Holly, Ogras, Umit Y.

    ISSN: 1558-2434
    Vydavateľské údaje: ACM 05.11.2018
    “…Human activity recognition (HAR) has attracted significant research interest due to its applications in health monitoring and patient rehabilitation. Recent…”
    Získať plný text
    Konferenčný príspevok..
  10. 10

    Augmenting API Documentation with Insights from Stack Overflow Autor Treude, Christoph, Robillard, Martin P.

    ISSN: 1558-1225
    Vydavateľské údaje: ACM 01.05.2016
    “…Software developers need access to different kinds of information which is often dispersed among different documentation sources, such as API documentation or…”
    Získať plný text
    Konferenčný príspevok..
  11. 11

    CodeS: Towards Code Model Generalization Under Distribution Shift Autor Hu, Qiang, Guo, Yuejun, Xie, Xiaofei, Cordy, Maxime, Papadakis, Mike, Ma, Lei, Le Traon, Yves

    ISSN: 2832-7632
    Vydavateľské údaje: IEEE 01.05.2023
    “…Distribution shift has been a longstanding challenge for the reliable deployment of deep learning (DL) models due to unexpected accuracy degradation. Although…”
    Získať plný text
    Konferenčný príspevok..
  12. 12

    A Unified DNN Weight Pruning Framework Using Reweighted Optimization Methods Autor Zhang, Tianyun, Ma, Xiaolong, Zhan, Zheng, Zhou, Shanglin, Ding, Caiwen, Fardad, Makan, Wang, Yanzhi

    Vydavateľské údaje: IEEE 05.12.2021
    “…To address the large model size and intensive computation requirement of deep neural networks (DNNs), weight pruning techniques have been proposed and…”
    Získať plný text
    Konferenčný príspevok..
  13. 13

    An Energy-Aware Approach to Design Self-Adaptive AI-based Applications on the Edge Autor Tundo, Alessandro, Mobilio, Marco, Ilager, Shashikant, Brandic, Ivona, Bartocci, Ezio, Mariani, Leonardo

    ISSN: 2643-1572
    Vydavateľské údaje: IEEE 11.09.2023
    “…The advent of edge devices dedicated to machine learning tasks enabled the execution of AI-based applications that efficiently process and classify the data…”
    Získať plný text
    Konferenčný príspevok..
  14. 14

    Fairquant: Certifying and Quantifying Fairness of Deep Neural Networks Autor Kim, Brian Hyeongseok, Wang, Jingbo, Wang, Chao

    ISSN: 1558-1225
    Vydavateľské údaje: IEEE 26.04.2025
    “…We propose a method for formally certifying and quantifying individual fairness of deep neural networks (DNN). Individual fairness guarantees that any two…”
    Získať plný text
    Konferenčný príspevok..
  15. 15

    Diversity Drives Fairness: Ensemble of Higher Order Mutants for Intersectional Fairness of Machine Learning Software Autor Chen, Zhenpeng, Li, Xinyue, Zhang, Jie M., Sarro, Federica, Liu, Yang

    ISSN: 1558-1225
    Vydavateľské údaje: IEEE 26.04.2025
    “…Intersectional fairness is a critical requirement for Machine Learning (ML) software, demanding fairness across subgroups defined by multiple protected…”
    Získať plný text
    Konferenčný príspevok..
  16. 16

    Efficient Transformer Inference with Statically Structured Sparse Attention Autor Dai, Steve, Genc, Hasan, Venkatesan, Rangharajan, Khailany, Brucek

    Vydavateľské údaje: IEEE 09.07.2023
    “…Self-attention matrices of Transformers are often highly sparse because the relevant context of each token is typically limited to just a few other tokens in…”
    Získať plný text
    Konferenčný príspevok..
  17. 17

    FF-INT8: Efficient Forward-Forward DNN Training on Edge Devices with INT8 Precision Autor Ma, Jingxiao, Panda, Priyadarshini, Reda, Sherief

    Vydavateľské údaje: IEEE 22.06.2025
    “…Backpropagation has been the cornerstone of neural network training for decades, yet its inefficiencies in time and energy consumption limit its suitability…”
    Získať plný text
    Konferenčný príspevok..
  18. 18

    Enabling On-Tiny-Device Model Personalization via Gradient Condensing and Alternant Partial Update Autor Jia, Zhenge, Shi, Yiyang, Bao, Zeyu, Wang, Zirui, Pang, Xin, Liu, Huiguo, Duan, Yu, Shen, Zhaoyan, Zhao, Mengying

    Vydavateľské údaje: IEEE 22.06.2025
    “…On-device training enables the model to adapt to user-specific data by fine-tuning a pre-trained model locally. As embedded devices become ubiquitous,…”
    Získať plný text
    Konferenčný príspevok..
  19. 19

    SSpMV: A Sparsity-aware SpMV Framework Empowered by Multimodal Machine Learning Autor Lin, Shengle, Liu, Chubo, Ding, Yan, Zhou, Joey Tianyi, Li, Kenli, Yang, Wangdong

    Vydavateľské údaje: IEEE 22.06.2025
    “…Sparse Matrix-Vector Multiplication (SpMV) is an essential sparse operation in scientific computing and artificial intelligence. Efficiently adapting SpMV…”
    Získať plný text
    Konferenčný príspevok..
  20. 20

    Late Breaking Results: Less Sense Makes More Sense: In-Sensor Compressive Learning for Efficient Machine Vision Autor Liang, Yiwen, Cao, Weidong

    Vydavateľské údaje: IEEE 22.06.2025
    “…Integrating deep learning and image sensors has significantly transformed machine vision applications. Yet, conventional highresolution image acquisition…”
    Získať plný text
    Konferenčný príspevok..