Výsledky vyhľadávania - "Computing methodologies Machine learning"

  1. 1

    On-the-fly Improving Performance of Deep Code Models via Input Denoising Autor Tian, Zhao, Chen, Junjie, Zhang, Xiangyu

    ISSN: 2643-1572
    Vydavateľské údaje: IEEE 11.09.2023
    “…Deep learning has been widely adopted to tackle various code-based tasks by building deep code models based on a large amount of code snippets. While these…”
    Získať plný text
    Konferenčný príspevok..
  2. 2

    Detecting and Explaining Anomalies Caused by Web Tamper Attacks via Building Consistency-based Normality Autor Liao, Yifan, Xu, Ming, Lin, Yun, Teoh, Xiwen, Xie, Xiaofei, Feng, Ruitao, Liauw, Frank, Zhang, Hongyu, Dong, Jin Song

    ISSN: 2643-1572
    Vydavateľské údaje: ACM 27.10.2024
    “…Web applications are crucial infrastructures in the modern society, which have high demand of reliability and security. However, their frontend can be…”
    Získať plný text
    Konferenčný príspevok..
  3. 3

    SLIM: a Scalable and Interpretable Light-weight Fault Localization Algorithm for Imbalanced Data in Microservice Autor Ren, Rui, Yang, Jingbang, Yang, Linxiao, Gu, Xinyue, Sun, Liang

    ISSN: 2643-1572
    Vydavateľské údaje: ACM 27.10.2024
    “… This paper proposes a novel method that utilizes decision rule sets to deal with highly imbalanced data by optimizing the F1 score subject to cardinality constraints…”
    Získať plný text
    Konferenčný príspevok..
  4. 4

    GANtlitz: Ultra High Resolution Generative Model for Multi‐Modal Face Textures Autor Gruber, A., Collins, E., Meka, A., Mueller, F., Sarkar, K., Orts‐Escolano, S., Prasso, L., Busch, J., Gross, M., Beeler, T.

    ISSN: 0167-7055, 1467-8659
    Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.05.2024
    Vydané v Computer graphics forum (01.05.2024)
    “… The acquisition of high resolution assets at scale is cumbersome, it involves enrolling a large number of human subjects, using expensive multi…”
    Získať plný text
    Journal Article
  5. 5

    The Art and Practice of Data Science Pipelines: A Comprehensive Study of Data Science Pipelines In Theory, In-The-Small, and In-The-Large Autor Biswas, Sumon, Wardat, Mohammad, Rajan, Hridesh

    ISSN: 1558-1225
    Vydavateľské údaje: ACM 01.05.2022
    “…Increasingly larger number of software systems today are including data science components for descriptive, predictive, and prescriptive analytics. The…”
    Získať plný text
    Konferenčný príspevok..
  6. 6

    Multilingual training for Software Engineering Autor Ahmed, Toufique, Devanbu, Premkumar

    ISSN: 1558-1225
    Vydavateľské údaje: ACM 01.05.2022
    “… Several SE tasks have all been subject to this approach, with performance gradually improving over the past several years with better models and training methods…”
    Získať plný text
    Konferenčný príspevok..
  7. 7

    Prioritizing Test Inputs for Deep Neural Networks via Mutation Analysis Autor Wang, Zan, You, Hanmo, Chen, Junjie, Zhang, Yingyi, Dong, Xuyuan, Zhang, Wenbin

    ISBN: 1665402962, 9781665402965
    ISSN: 1558-1225
    Vydavateľské údaje: IEEE 01.05.2021
    “…Deep Neural Network (DNN) testing is one of the most widely-used ways to guarantee the quality of DNNs. However, labeling test inputs to check the correctness…”
    Získať plný text
    Konferenčný príspevok..
  8. 8

    Safe DNN-type Controller Synthesis for Nonlinear Systems via Meta Reinforcement Learning Autor Zhao, Hanrui, Zeng, Xia, Qi, Niuniu, Yang, Zhengfeng, Zeng, Zhenbing

    Vydavateľské údaje: IEEE 09.07.2023
    “…) controllers for nonlinear systems subject to safety constraints. Our approach incorporates two phases…”
    Získať plný text
    Konferenčný príspevok..
  9. 9

    Operation is the Hardest Teacher: Estimating DNN Accuracy Looking for Mispredictions Autor Guerriero, Antonio, Pietrantuono, Roberto, Russo, Stefano

    ISBN: 1665402962, 9781665402965
    ISSN: 1558-1225
    Vydavateľské údaje: IEEE 01.05.2021
    “…Deep Neural Networks (DNN) are typically tested for accuracy relying on a set of unlabelled real world data (operational dataset), from which a subset is…”
    Získať plný text
    Konferenčný príspevok..
  10. 10

    Exploring Classifiers with Differentiable Decision Boundary Maps Autor Machado, A., Behrisch, M., Telea, A.

    ISSN: 0167-7055, 1467-8659, 1467-8659
    Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.06.2024
    Vydané v Computer graphics forum (01.06.2024)
    “…Explaining Machine Learning (ML) — and especially Deep Learning (DL) — classifiers' decisions is a subject of interest across fields due to the increasing ubiquity of such models in computing systems…”
    Získať plný text
    Journal Article
  11. 11

    How to Support ML End-User Programmers through a Conversational Agent Autor Garcia, Emily Arteaga, Pimentel, Joao Felipe, Feng, Zixuan, Gerosa, Marco, Steinmacher, Igor, Sarma, Anita

    ISSN: 1558-1225
    Vydavateľské údaje: ACM 14.04.2024
    “… them. To evaluate the efficacy of Newton's design, we conducted a Wizard of Oz within-subjects study with 12 ML-EUPs…”
    Získať plný text
    Konferenčný príspevok..
  12. 12

    Enhancing Deep Reinforcement Learning with Executable Specifications Autor Yerushalmi, Raz

    ISSN: 2574-1934
    Vydavateľské údaje: IEEE 01.05.2023
    “…Deep reinforcement learning (DRL) has become a dominant paradigm for using deep learning to carry out tasks where complex policies are learned for reactive…”
    Získať plný text
    Konferenčný príspevok..
  13. 13

    AaceGEN: Attention Guided Adversarial Code Example Generation for Deep Code Models Autor Li, Zhong, Zhang, Chong, Pan, Minxue, Zhang, Tian, Li, Xuandong

    ISSN: 2643-1572
    Vydavateľské údaje: ACM 27.10.2024
    “…Adversarial code examples are important to investigate the robustness of deep code models. Existing work on adversarial code example generation has shown…”
    Získať plný text
    Konferenčný príspevok..
  14. 14

    Automatic Extraction of Cause-Effect-Relations from Requirements Artifacts Autor Frattini, Julian, Junker, Maximilian, Unterkalmsteiner, Michael, Mendez, Daniel

    ISSN: 2643-1572
    Vydavateľské údaje: ACM 01.09.2020
    “…) causal sentences convey essential context about the subject of requirements, and (3) extracted and formalized causality relations are usable for a (semi…”
    Získať plný text
    Konferenčný príspevok..
  15. 15

    Personalization without user interruption: boosting activity recognition in new subjects using unlabeled data Autor Fallahzadeh, Ramin, Ghasemzadeh, Hassan

    ISBN: 9781450349659, 145034965X
    Vydavateľské údaje: New York, NY, USA ACM 18.04.2017
    “… In this paper, we propose an uninformed cross-subject transfer learning algorithm that leverages the cross-user similarities by constructing a network-based feature-level representation of the data…”
    Získať plný text
    Konferenčný príspevok..
  16. 16

    Accurate Body Pose Matching for Individuals with Stroke using Siamese Networks Autor Gokhman, Ruslan, Sawdayi, Talya, Khan, Rana, Satyanarayana, Ashwin, Vinjamuri, Ramana, Kadiyala, Sai Praveen

    ISSN: 2832-2975
    Vydavateľské údaje: IEEE 19.06.2024
    “…Stroke is one of the major causes of long-term disability in United States. With more than 800,00 people experiencing stroke every year, it is important that efficient means for recovery are presented to support stroke subjects…”
    Získať plný text
    Konferenčný príspevok..
  17. 17

    Convolutional Neural Networks for Biomedical Text Classification: Application in Indexing Biomedical Articles Autor Rios, Anthony, Kavuluru, Ramakanth

    Vydavateľské údaje: United States 01.09.2015
    “…) outperforms several traditional approaches in biomedical text classification with the specific use-case of assigning medical subject headings (or MeSH terms…”
    Zistit podrobnosti o prístupe
    Journal Article
  18. 18

    Efficient Model Learning from Joint-Action Demonstrations for Human-Robot Collaborative Tasks Autor Nikolaidis, Stefanos, Ramakrishnan, Ramya, Keren Gu, Shah, Julie

    Vydavateľské údaje: ACM 02.03.2015
    “…We present a framework for automatically learning human user models from joint-action demonstrations that enables a robot to compute a robust policy for a…”
    Získať plný text
    Konferenčný príspevok..
  19. 19

    Towards robust activity recognition for everyday life: Methods and evaluation Autor Reiss, Attila, Stricker, Didier, Hendeby, Gustaf

    ISBN: 9781479902965, 1479902969, 1936968800, 9781936968800
    ISSN: 2153-1633
    Vydavateľské údaje: IEEE 01.05.2013
    “… Two important aspects of robustness are investigated: dealing with various (unknown) other activities and subject independency…”
    Získať plný text
    Konferenčný príspevok..
  20. 20

    GraphConfRec: A Graph Neural Network-Based Conference Recommender System Autor Iana, Andreea, Paulheim, Heiko

    Vydavateľské údaje: IEEE 01.09.2021
    “…In today's academic publishing model, especially in Computer Science, conferences commonly constitute the main platforms for releasing the latest peer-reviewed…”
    Získať plný text
    Konferenčný príspevok..