Výsledky vyhledávání - "Computing methodologies Machine learning"
-
1
Muffin: A Framework Toward Multi-Dimension AI Fairness by Uniting Off-the-Shelf Models
Vydáno: United States IEEE 01.07.2023Vydáno v 2023 60th ACM/IEEE Design Automation Conference (DAC) (01.07.2023)“…Model fairness (a.k.a., bias) has become one of the most critical problems in a wide range of AI applications. An unfair model in autonomous driving may cause…”
Získat plný text
Konferenční příspěvek Journal Article -
2
PrefixRL: Optimization of Parallel Prefix Circuits using Deep Reinforcement Learning
Vydáno: IEEE 05.12.2021Vydáno v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…In this work, we present a reinforcement learning (RL) based approach to designing parallel prefix circuits such as adders or priority encoders that are…”
Získat plný text
Konferenční příspěvek -
3
Code Difference Guided Adversarial Example Generation for Deep Code Models
ISSN: 2643-1572Vydáno: IEEE 11.09.2023Vydáno v IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (11.09.2023)“…Adversarial examples are important to test and enhance the robustness of deep code models. As source code is discrete and has to strictly stick to complex…”
Získat plný text
Konferenční příspěvek -
4
Toward Individual Fairness Testing with Data Validity
ISSN: 2643-1572Vydáno: ACM 27.10.2024Vydáno v IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (27.10.2024)“…Individual fairness testing (Ift) is a framework to find discriminatory instances within a given classifier. In this paper, we show our idea of a Ift…”
Získat plný text
Konferenční příspěvek -
5
Softermax: Hardware/Software Co-Design of an Efficient Softmax for Transformers
Vydáno: IEEE 05.12.2021Vydáno v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…Transformers have transformed the field of natural language processing. Their superior performance is largely attributed to the use of stacked "self-attention"…”
Získat plný text
Konferenční příspěvek -
6
Enabling On-Device Self-Supervised Contrastive Learning with Selective Data Contrast
Vydáno: IEEE 05.12.2021Vydáno v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…After a model is deployed on edge devices, it is desirable for these devices to learn from unlabeled data to continuously improve accuracy. Contrastive…”
Získat plný text
Konferenční příspěvek -
7
PreSto: An In-Storage Data Preprocessing System for Training Recommendation Models
Vydáno: IEEE 29.06.2024Vydáno v 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA) (29.06.2024)“…Training recommendation systems (RecSys) faces several challenges as it requires the "data preprocessing" stage to preprocess an ample amount of raw data and…”
Získat plný text
Konferenční příspěvek -
8
DistHD: A Learner-Aware Dynamic Encoding Method for Hyperdimensional Classification
Vydáno: IEEE 09.07.2023Vydáno v 2023 60th ACM/IEEE Design Automation Conference (DAC) (09.07.2023)“…The Internet of Things (IoT) has become an emerging trend that connects heterogeneous devices and enables them with new capabilities. Many applications exploit…”
Získat plný text
Konferenční příspěvek -
9
UniGenCoder: Merging SEQ2SEQ and SEQ2TREE Paradigms for Unified Code Generation
ISSN: 2832-7632Vydáno: IEEE 27.04.2025Vydáno v IEEE/ACM International Conference on Software Engineering: New Ideas and Emerging Technologies Results (Online) (27.04.2025)“…Deep learning-based code generation has completely transformed the way developers write programs today. Existing approaches to code generation have focused…”
Získat plný text
Konferenční příspěvek -
10
Fast Adversarial Training with Dynamic Batch-level Attack Control
Vydáno: IEEE 09.07.2023Vydáno v 2023 60th ACM/IEEE Design Automation Conference (DAC) (09.07.2023)“…Despite the fact that adversarial training provides an effective protection against adversarial attacks, it suffers from a huge computational overhead. To…”
Získat plný text
Konferenční příspěvek -
11
DARL: Distributed Reconfigurable Accelerator for Hyperdimensional Reinforcement Learning
ISSN: 1558-2434Vydáno: ACM 29.10.2022Vydáno v 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) (29.10.2022)“…Reinforcement Learning (RL) is a powerful technology to solve decision-making problems such as robotics control. Modern RL algorithms, i.e., Deep Q-Learning,…”
Získat plný text
Konferenční příspěvek -
12
Robust Tickets Can Transfer Better: Drawing More Transferable Subnetworks in Transfer Learning
Vydáno: IEEE 09.07.2023Vydáno v 2023 60th ACM/IEEE Design Automation Conference (DAC) (09.07.2023)“…Transfer learning leverages feature representations of deep neural networks (DNNs) pretrained on source tasks with rich data to empower effective finetuning on…”
Získat plný text
Konferenční příspěvek -
13
CAE-DFKD: Bridging the Transferability Gap in Data-Free Knowledge Distillation
Vydáno: IEEE 22.06.2025Vydáno v 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“…Data-Free Knowledge Distillation (DFKD) enables the knowledge transfer from the given pre-trained teacher network to the target student model without access to…”
Získat plný text
Konferenční příspěvek -
14
Making Fair ML Software using Trustworthy Explanation
ISSN: 2643-1572Vydáno: ACM 01.09.2020Vydáno v 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE) (01.09.2020)“…Machine learning software is being used in many applications (finance, hiring, admissions, criminal justice) having huge social impact. But sometimes the…”
Získat plný text
Konferenční příspěvek -
15
Dissecting Global Search: A Simple Yet Effective Method to Boost Individual Discrimination Testing and Repair
ISSN: 1558-1225Vydáno: IEEE 26.04.2025Vydáno v Proceedings / International Conference on Software Engineering (26.04.2025)“…Deep Learning (DL) has achieved significant success in socially critical decision-making applications but often exhibits unfair behaviors, raising social…”
Získat plný text
Konferenční příspěvek -
16
Iterative Generation of Adversarial Example for Deep Code Models
ISSN: 1558-1225Vydáno: IEEE 26.04.2025Vydáno v Proceedings / International Conference on Software Engineering (26.04.2025)“…Deep code models are vulnerable to adversarial attacks, making it possible for semantically identical inputs to trigger different responses. Current black-box…”
Získat plný text
Konferenční příspěvek -
17
Fairquant: Certifying and Quantifying Fairness of Deep Neural Networks
ISSN: 1558-1225Vydáno: IEEE 26.04.2025Vydáno v Proceedings / International Conference on Software Engineering (26.04.2025)“…We propose a method for formally certifying and quantifying individual fairness of deep neural networks (DNN). Individual fairness guarantees that any two…”
Získat plný text
Konferenční příspěvek -
18
On-the-fly Improving Performance of Deep Code Models via Input Denoising
ISSN: 2643-1572Vydáno: IEEE 11.09.2023Vydáno v IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (11.09.2023)“…Deep learning has been widely adopted to tackle various code-based tasks by building deep code models based on a large amount of code snippets. While these…”
Získat plný text
Konferenční příspěvek -
19
Code Prediction by Feeding Trees to Transformers
ISBN: 1665402962, 9781665402965ISSN: 1558-1225Vydáno: IEEE 01.05.2021Vydáno v Proceedings / International Conference on Software Engineering (01.05.2021)“…Code prediction, more specifically autocomplete, has become an essential feature in modern IDEs. Autocomplete is more effective when the desired next token is…”
Získat plný text
Konferenční příspěvek -
20
Diversity Drives Fairness: Ensemble of Higher Order Mutants for Intersectional Fairness of Machine Learning Software
ISSN: 1558-1225Vydáno: IEEE 26.04.2025Vydáno v Proceedings / International Conference on Software Engineering (26.04.2025)“…Intersectional fairness is a critical requirement for Machine Learning (ML) software, demanding fairness across subgroups defined by multiple protected…”
Získat plný text
Konferenční příspěvek

