Výsledky vyhledávání - "Computing methodologies Machine learning"

Upřesnit hledání
  1. 1

    Muffin: A Framework Toward Multi-Dimension AI Fairness by Uniting Off-the-Shelf Models Autor Sheng, Yi, Yang, Junhuan, Yang, Lei, Shi, Yiyu, Hu, Jingtong, Jiang, Weiwen

    Vydáno: United States IEEE 01.07.2023
    “…Model fairness (a.k.a., bias) has become one of the most critical problems in a wide range of AI applications. An unfair model in autonomous driving may cause…”
    Získat plný text
    Konferenční příspěvek Journal Article
  2. 2

    PrefixRL: Optimization of Parallel Prefix Circuits using Deep Reinforcement Learning Autor Roy, Rajarshi, Raiman, Jonathan, Kant, Neel, Elkin, Ilyas, Kirby, Robert, Siu, Michael, Oberman, Stuart, Godil, Saad, Catanzaro, Bryan

    Vydáno: IEEE 05.12.2021
    “…In this work, we present a reinforcement learning (RL) based approach to designing parallel prefix circuits such as adders or priority encoders that are…”
    Získat plný text
    Konferenční příspěvek
  3. 3

    Code Difference Guided Adversarial Example Generation for Deep Code Models Autor Tian, Zhao, Chen, Junjie, Jin, Zhi

    ISSN: 2643-1572
    Vydáno: IEEE 11.09.2023
    “…Adversarial examples are important to test and enhance the robustness of deep code models. As source code is discrete and has to strictly stick to complex…”
    Získat plný text
    Konferenční příspěvek
  4. 4

    Toward Individual Fairness Testing with Data Validity Autor Kitamura, Takashi, Amasaki, Sousuke, Inoue, Jun, Isobe, Yoshinao, Toda, Takahisa

    ISSN: 2643-1572
    Vydáno: ACM 27.10.2024
    “…Individual fairness testing (Ift) is a framework to find discriminatory instances within a given classifier. In this paper, we show our idea of a Ift…”
    Získat plný text
    Konferenční příspěvek
  5. 5

    Softermax: Hardware/Software Co-Design of an Efficient Softmax for Transformers Autor Stevens, Jacob R., Venkatesan, Rangharajan, Dai, Steve, Khailany, Brucek, Raghunathan, Anand

    Vydáno: IEEE 05.12.2021
    “…Transformers have transformed the field of natural language processing. Their superior performance is largely attributed to the use of stacked "self-attention"…”
    Získat plný text
    Konferenční příspěvek
  6. 6

    Enabling On-Device Self-Supervised Contrastive Learning with Selective Data Contrast Autor Wu, Yawen, Wang, Zhepeng, Zeng, Dewen, Shi, Yiyu, Hu, Jingtong

    Vydáno: IEEE 05.12.2021
    “…After a model is deployed on edge devices, it is desirable for these devices to learn from unlabeled data to continuously improve accuracy. Contrastive…”
    Získat plný text
    Konferenční příspěvek
  7. 7

    PreSto: An In-Storage Data Preprocessing System for Training Recommendation Models Autor Lee, Yunjae, Kim, Hyeseong, Rhu, Minsoo

    Vydáno: IEEE 29.06.2024
    “…Training recommendation systems (RecSys) faces several challenges as it requires the "data preprocessing" stage to preprocess an ample amount of raw data and…”
    Získat plný text
    Konferenční příspěvek
  8. 8

    DistHD: A Learner-Aware Dynamic Encoding Method for Hyperdimensional Classification Autor Wang, Junyao, Huang, Sitao, Imani, Mohsen

    Vydáno: IEEE 09.07.2023
    “…The Internet of Things (IoT) has become an emerging trend that connects heterogeneous devices and enables them with new capabilities. Many applications exploit…”
    Získat plný text
    Konferenční příspěvek
  9. 9

    UniGenCoder: Merging SEQ2SEQ and SEQ2TREE Paradigms for Unified Code Generation Autor Shao, Liangying, Yan, Yanfu, Poshyvanyk, Denys, Su, Jinsong

    ISSN: 2832-7632
    Vydáno: IEEE 27.04.2025
    “…Deep learning-based code generation has completely transformed the way developers write programs today. Existing approaches to code generation have focused…”
    Získat plný text
    Konferenční příspěvek
  10. 10

    Fast Adversarial Training with Dynamic Batch-level Attack Control Autor Jung, Jaewon, Song, Jaeyong, Jang, Hongsun, Lee, Hyeyoon, Choi, Kanghyun, Park, Noseong, Lee, Jinho

    Vydáno: IEEE 09.07.2023
    “…Despite the fact that adversarial training provides an effective protection against adversarial attacks, it suffers from a huge computational overhead. To…”
    Získat plný text
    Konferenční příspěvek
  11. 11

    DARL: Distributed Reconfigurable Accelerator for Hyperdimensional Reinforcement Learning Autor Chen, Hanning, Issa, Mariam, Ni, Yang, Imani, Mohsen

    ISSN: 1558-2434
    Vydáno: ACM 29.10.2022
    “…Reinforcement Learning (RL) is a powerful technology to solve decision-making problems such as robotics control. Modern RL algorithms, i.e., Deep Q-Learning,…”
    Získat plný text
    Konferenční příspěvek
  12. 12

    Robust Tickets Can Transfer Better: Drawing More Transferable Subnetworks in Transfer Learning Autor Fu, Yonggan, Yuan, Ye, Wu, Shang, Yuan, Jiayi, Lin, Yingyan Celine

    Vydáno: IEEE 09.07.2023
    “…Transfer learning leverages feature representations of deep neural networks (DNNs) pretrained on source tasks with rich data to empower effective finetuning on…”
    Získat plný text
    Konferenční příspěvek
  13. 13

    CAE-DFKD: Bridging the Transferability Gap in Data-Free Knowledge Distillation Autor Zhang, Zherui, Wang, Changwei, Xu, Rongtao, Xu, Wenhao, Xu, Shibiao, Zhang, Yu, Zhou, Jie, Guo, Li

    Vydáno: IEEE 22.06.2025
    “…Data-Free Knowledge Distillation (DFKD) enables the knowledge transfer from the given pre-trained teacher network to the target student model without access to…”
    Získat plný text
    Konferenční příspěvek
  14. 14

    Making Fair ML Software using Trustworthy Explanation Autor Chakraborty, Joymallya, Peng, Kewen, Menzies, Tim

    ISSN: 2643-1572
    Vydáno: ACM 01.09.2020
    “…Machine learning software is being used in many applications (finance, hiring, admissions, criminal justice) having huge social impact. But sometimes the…”
    Získat plný text
    Konferenční příspěvek
  15. 15

    Dissecting Global Search: A Simple Yet Effective Method to Boost Individual Discrimination Testing and Repair Autor Quan, Lili, Li, Tianlin, Xie, Xiaofei, Chen, Zhenpeng, Chen, Sen, Jiang, Lingxiao, Li, Xiaohong

    ISSN: 1558-1225
    Vydáno: IEEE 26.04.2025
    “…Deep Learning (DL) has achieved significant success in socially critical decision-making applications but often exhibits unfair behaviors, raising social…”
    Získat plný text
    Konferenční příspěvek
  16. 16

    Iterative Generation of Adversarial Example for Deep Code Models Autor Huang, Li, Sun, Weifeng, Yan, Meng

    ISSN: 1558-1225
    Vydáno: IEEE 26.04.2025
    “…Deep code models are vulnerable to adversarial attacks, making it possible for semantically identical inputs to trigger different responses. Current black-box…”
    Získat plný text
    Konferenční příspěvek
  17. 17

    Fairquant: Certifying and Quantifying Fairness of Deep Neural Networks Autor Kim, Brian Hyeongseok, Wang, Jingbo, Wang, Chao

    ISSN: 1558-1225
    Vydáno: IEEE 26.04.2025
    “…We propose a method for formally certifying and quantifying individual fairness of deep neural networks (DNN). Individual fairness guarantees that any two…”
    Získat plný text
    Konferenční příspěvek
  18. 18

    On-the-fly Improving Performance of Deep Code Models via Input Denoising Autor Tian, Zhao, Chen, Junjie, Zhang, Xiangyu

    ISSN: 2643-1572
    Vydáno: IEEE 11.09.2023
    “…Deep learning has been widely adopted to tackle various code-based tasks by building deep code models based on a large amount of code snippets. While these…”
    Získat plný text
    Konferenční příspěvek
  19. 19

    Code Prediction by Feeding Trees to Transformers Autor Kim, Seohyun, Zhao, Jinman, Tian, Yuchi, Chandra, Satish

    ISBN: 1665402962, 9781665402965
    ISSN: 1558-1225
    Vydáno: IEEE 01.05.2021
    “…Code prediction, more specifically autocomplete, has become an essential feature in modern IDEs. Autocomplete is more effective when the desired next token is…”
    Získat plný text
    Konferenční příspěvek
  20. 20

    Diversity Drives Fairness: Ensemble of Higher Order Mutants for Intersectional Fairness of Machine Learning Software Autor Chen, Zhenpeng, Li, Xinyue, Zhang, Jie M., Sarro, Federica, Liu, Yang

    ISSN: 1558-1225
    Vydáno: IEEE 26.04.2025
    “…Intersectional fairness is a critical requirement for Machine Learning (ML) software, demanding fairness across subgroups defined by multiple protected…”
    Získat plný text
    Konferenční příspěvek