Výsledky vyhledávání - "Computing methodologies → Distributed computing methodologies"

  1. 1

    MAD-Max Beyond Single-Node: Enabling Large Machine Learning Model Acceleration on Distributed Systems Autor Hsia, Samuel, Golden, Alicia, Acun, Bilge, Ardalani, Newsha, DeVito, Zachary, Wei, Gu-Yeon, Brooks, David, Wu, Carole-Jean

    Vydáno: IEEE 29.06.2024
    “…Training and deploying large-scale machine learning models is time-consuming, requires significant distributed computing infrastructures, and incurs high…”
    Získat plný text
    Konferenční příspěvek
  2. 2

    Submodularity of Distributed Join Computation Autor Li, Rundong, Riedewald, Mirek, Deng, Xinyan

    ISSN: 0730-8078
    Vydáno: United States 01.06.2018
    “…We study distributed equi-join computation in the presence of join-attribute skew, which causes load imbalance. Skew can be addressed by more fine-grained…”
    Zjistit podrobnosti o přístupu
    Journal Article
  3. 3

    AdaGL: Adaptive Learning for Agile Distributed Training of Gigantic GNNs Autor Zhang, Ruisi, Javaheripi, Mojan, Ghodsi, Zahra, Bleiweiss, Amit, Koushanfar, Farinaz

    Vydáno: IEEE 09.07.2023
    “…Distributed GNN training on contemporary massive and densely connected graphs requires information aggregation from all neighboring nodes, which leads to an…”
    Získat plný text
    Konferenční příspěvek
  4. 4

    Centralized Training and Decentralized Control through the Actor-Critic Paradigm for Highly Optimized Multicores Autor Dietrich, Benedikt, Khdr, Heba, Henkel, Jorg

    Vydáno: IEEE 22.06.2025
    “…While distributed, neural-network-based resource controllers represent the state of the art for their ability to cope with the ever-expanding decision space,…”
    Získat plný text
    Konferenční příspěvek
  5. 5

    HADFL: Heterogeneity-aware Decentralized Federated Learning Framework Autor Cao, Jing, Lian, Zirui, Liu, Weihong, Zhu, Zongwei, Ji, Cheng

    Vydáno: IEEE 05.12.2021
    “…Federated learning (FL) supports training models on geographically distributed devices. However, traditional FL systems adopt a centralized synchronous…”
    Získat plný text
    Konferenční příspěvek
  6. 6

    DeepScaler: Holistic Autoscaling for Microservices Based on Spatiotemporal GNN with Adaptive Graph Learning Autor Meng, Chunyang, Song, Shijie, Tong, Haogang, Pan, Maolin, Yu, Yang

    ISSN: 2643-1572
    Vydáno: IEEE 11.09.2023
    “…Autoscaling functions provide the foundation for achieving elasticity in the modern cloud computing paradigm. It enables dynamic provisioning or…”
    Získat plný text
    Konferenční příspěvek
  7. 7

    MMDFL: Multi-Model-based Decentralized Federated Learning for Resource-Constrained AIoT Systems Autor Yan, Dengke, Yang, Yanxin, Hu, Ming, Fu, Xin, Chen, Mingsong

    Vydáno: IEEE 22.06.2025
    “…Along with the prosperity of Artificial Intelligence (AI) techniques, more and more Artificial Intelligence of Things (AIoT) applications adopt Federated…”
    Získat plný text
    Konferenční příspěvek
  8. 8

    Skywalker: Efficient Alias-Method-Based Graph Sampling and Random Walk on GPUs Autor Wang, Pengyu, Li, Chao, Wang, Jing, Wang, Taolei, Zhang, Lu, Leng, Jingwen, Chen, Quan, Guo, Minyi

    Vydáno: IEEE 01.09.2021
    “…Graph sampling and random walk operations, capturing the structural properties of graphs, are playing an important role today as we cannot directly adopt…”
    Získat plný text
    Konferenční příspěvek
  9. 9

    Derm: SLA-aware Resource Management for Highly Dynamic Microservices Autor Chen, Liao, Luo, Shutian, Lin, Chenyu, Mo, Zizhao, Xu, Huanle, Ye, Kejiang, Xu, Chengzhong

    Vydáno: IEEE 29.06.2024
    “…Ensuring efficient resource allocation while providing service level agreement (SLA) guarantees for end-to-end (E2E) latency is crucial for microservice…”
    Získat plný text
    Konferenční příspěvek
  10. 10

    PreSto: An In-Storage Data Preprocessing System for Training Recommendation Models Autor Lee, Yunjae, Kim, Hyeseong, Rhu, Minsoo

    Vydáno: IEEE 29.06.2024
    “…Training recommendation systems (RecSys) faces several challenges as it requires the "data preprocessing" stage to preprocess an ample amount of raw data and…”
    Získat plný text
    Konferenční příspěvek
  11. 11

    NDFT: Accelerating Density Functional Theory Calculations via Hardware/Software Co-Design on Near-Data Computing System Autor Jiang, Qingcai, Tu, Buxin, Hao, Xiaoyu, Chen, Junshi, An, Hong

    Vydáno: IEEE 22.06.2025
    “…Linear-response time-dependent Density Functional Theory (LR-TDDFT) is a widely used method for accurately predicting the excited-state properties of physical…”
    Získat plný text
    Konferenční příspěvek
  12. 12

    DS-GL: Advancing Graph Learning via Harnessing Nature's Power within Scalable Dynamical Systems Autor Song, Ruibing, Wu, Chunshu, Liu, Chuan, Li, Ang, Huang, Michael, Geng, Tony Tong

    Vydáno: IEEE 29.06.2024
    “…With the rapid digitization of the world, an increasing number of real-world applications are turning to non-Euclidean data, modeled as graphs. Due to their…”
    Získat plný text
    Konferenční příspěvek
  13. 13

    Invited: Waving the Double-Edged Sword: Building Resilient CAVs with Edge and Cloud Computing Autor Liu, Xiangguo, Luo, Yunpeng, Goeckner, Anthony, Chakraborty, Trishna, Jiao, Ruochen, Wang, Ningfei, Wang, Yixuan, Sato, Takami, Chen, Qi Alfred, Zhu, Qi

    Vydáno: IEEE 09.07.2023
    “…The rapid advancement of edge and cloud computing platforms, vehicular ad-hoc networks, and machine learning techniques have brought both opportunities and…”
    Získat plný text
    Konferenční příspěvek
  14. 14

    Personalized Heterogeneity-aware Federated Search Towards Better Accuracy and Energy Efficiency Autor Yang, Zhao, Sun, Qingshuang

    ISSN: 1558-2434
    Vydáno: ACM 29.10.2022
    “…Federated learning (FL), a new distributed technology, allows us to train the global model on the edge and embedded devices without local data sharing…”
    Získat plný text
    Konferenční příspěvek
  15. 15

    Distributing and Load Balancing Sparse Fluid Simulations Autor Shah, C., Hyde, D., Qu, H., Levis, P.

    ISSN: 0167-7055, 1467-8659
    Vydáno: Oxford Blackwell Publishing Ltd 01.12.2018
    Vydáno v Computer graphics forum (01.12.2018)
    “…This paper describes a general algorithm and a system for load balancing sparse fluid simulations. Automatically distributing sparse fluid simulations…”
    Získat plný text
    Journal Article
  16. 16

    Gluon-Async: A Bulk-Asynchronous System for Distributed and Heterogeneous Graph Analytics Autor Dathathri, Roshan, Gill, Gurbinder, Hoang, Loc, Jatala, Vishwesh, Pingali, Keshav, Nandivada, V. Krishna, Dang, Hoang-Vu, Snir, Marc

    ISSN: 2641-7936
    Vydáno: IEEE 01.09.2019
    “…Distributed graph analytics systems for CPUs, like D-Galois and Gemini, and for GPUs, like D-IrGL and Lux, use a bulk-synchronous parallel (BSP) programming…”
    Získat plný text
    Konferenční příspěvek
  17. 17

    FaaSConf: QoS-aware Hybrid Resources Configuration for Serverless Workflows Autor Wang, Yilun, Chen, Pengfei, Dou, Hui, Zhang, Yiwen, Yu, Guangba, He, Zilong, Huang, Haiyu

    ISSN: 2643-1572
    Vydáno: ACM 27.10.2024
    “…Serverless computing, also known as Function-as-a-Service (FaaS), is a significant development trend in modern software system architecture. The workflow…”
    Získat plný text
    Konferenční příspěvek
  18. 18

    Accelerating Distributed Graphical Fluid Simulations with Micro‐partitioning Autor Qu, Hang, Mashayekhi, Omid, Shah, Chinmayee, Levis, Philip

    ISSN: 0167-7055, 1467-8659
    Vydáno: Oxford Blackwell Publishing Ltd 01.02.2020
    Vydáno v Computer graphics forum (01.02.2020)
    “…Graphical fluid simulations are CPU‐bound. Parallelizing simulations on hundreds of cores in the computing cloud would make them faster, but requires evenly…”
    Získat plný text
    Journal Article
  19. 19

    GraNNDis: Fast Distributed Graph Neural Network Training Framework for Multi-Server Clusters Autor Song, Jaeyong, Jang, Hongsun, Lim, Hunseong, Jung, Jaewon, Kim, Youngsok, Lee, Jinho

    Vydáno: ACM 13.10.2024
    “…Graph neural networks (GNNs) are one of the rapidly growing fields within deep learning. While many distributed GNN training frameworks have been proposed to…”
    Získat plný text
    Konferenční příspěvek
  20. 20

    MyML: User-Driven Machine Learning Autor Goyal, Vidushi, Bertacco, Valeria, Das, Reetuparna

    Vydáno: IEEE 05.12.2021
    “…Machine learning (ML) on resource-constrained edge devices is expensive and often requires offloading computation to the cloud, which may compromise the…”
    Získat plný text
    Konferenční příspěvek