Výsledky vyhledávání - "Computing methodologies → Distributed computing methodologies"
-
1
MAD-Max Beyond Single-Node: Enabling Large Machine Learning Model Acceleration on Distributed Systems
Vydáno: IEEE 29.06.2024Vydáno v 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA) (29.06.2024)“…Training and deploying large-scale machine learning models is time-consuming, requires significant distributed computing infrastructures, and incurs high…”
Získat plný text
Konferenční příspěvek -
2
Submodularity of Distributed Join Computation
ISSN: 0730-8078Vydáno: United States 01.06.2018Vydáno v Proceedings - ACM-SIGMOD International Conference on Management of Data (01.06.2018)“…We study distributed equi-join computation in the presence of join-attribute skew, which causes load imbalance. Skew can be addressed by more fine-grained…”
Zjistit podrobnosti o přístupu
Journal Article -
3
AdaGL: Adaptive Learning for Agile Distributed Training of Gigantic GNNs
Vydáno: IEEE 09.07.2023Vydáno v 2023 60th ACM/IEEE Design Automation Conference (DAC) (09.07.2023)“…Distributed GNN training on contemporary massive and densely connected graphs requires information aggregation from all neighboring nodes, which leads to an…”
Získat plný text
Konferenční příspěvek -
4
Centralized Training and Decentralized Control through the Actor-Critic Paradigm for Highly Optimized Multicores
Vydáno: IEEE 22.06.2025Vydáno v 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“…While distributed, neural-network-based resource controllers represent the state of the art for their ability to cope with the ever-expanding decision space,…”
Získat plný text
Konferenční příspěvek -
5
HADFL: Heterogeneity-aware Decentralized Federated Learning Framework
Vydáno: IEEE 05.12.2021Vydáno v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…Federated learning (FL) supports training models on geographically distributed devices. However, traditional FL systems adopt a centralized synchronous…”
Získat plný text
Konferenční příspěvek -
6
DeepScaler: Holistic Autoscaling for Microservices Based on Spatiotemporal GNN with Adaptive Graph Learning
ISSN: 2643-1572Vydáno: IEEE 11.09.2023Vydáno v IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (11.09.2023)“…Autoscaling functions provide the foundation for achieving elasticity in the modern cloud computing paradigm. It enables dynamic provisioning or…”
Získat plný text
Konferenční příspěvek -
7
MMDFL: Multi-Model-based Decentralized Federated Learning for Resource-Constrained AIoT Systems
Vydáno: IEEE 22.06.2025Vydáno v 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“…Along with the prosperity of Artificial Intelligence (AI) techniques, more and more Artificial Intelligence of Things (AIoT) applications adopt Federated…”
Získat plný text
Konferenční příspěvek -
8
Skywalker: Efficient Alias-Method-Based Graph Sampling and Random Walk on GPUs
Vydáno: IEEE 01.09.2021Vydáno v 2021 30th International Conference on Parallel Architectures and Compilation Techniques (PACT) (01.09.2021)“…Graph sampling and random walk operations, capturing the structural properties of graphs, are playing an important role today as we cannot directly adopt…”
Získat plný text
Konferenční příspěvek -
9
Derm: SLA-aware Resource Management for Highly Dynamic Microservices
Vydáno: IEEE 29.06.2024Vydáno v 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA) (29.06.2024)“…Ensuring efficient resource allocation while providing service level agreement (SLA) guarantees for end-to-end (E2E) latency is crucial for microservice…”
Získat plný text
Konferenční příspěvek -
10
PreSto: An In-Storage Data Preprocessing System for Training Recommendation Models
Vydáno: IEEE 29.06.2024Vydáno v 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA) (29.06.2024)“…Training recommendation systems (RecSys) faces several challenges as it requires the "data preprocessing" stage to preprocess an ample amount of raw data and…”
Získat plný text
Konferenční příspěvek -
11
NDFT: Accelerating Density Functional Theory Calculations via Hardware/Software Co-Design on Near-Data Computing System
Vydáno: IEEE 22.06.2025Vydáno v 2025 62nd ACM/IEEE Design Automation Conference (DAC) (22.06.2025)“…Linear-response time-dependent Density Functional Theory (LR-TDDFT) is a widely used method for accurately predicting the excited-state properties of physical…”
Získat plný text
Konferenční příspěvek -
12
DS-GL: Advancing Graph Learning via Harnessing Nature's Power within Scalable Dynamical Systems
Vydáno: IEEE 29.06.2024Vydáno v 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA) (29.06.2024)“…With the rapid digitization of the world, an increasing number of real-world applications are turning to non-Euclidean data, modeled as graphs. Due to their…”
Získat plný text
Konferenční příspěvek -
13
Invited: Waving the Double-Edged Sword: Building Resilient CAVs with Edge and Cloud Computing
Vydáno: IEEE 09.07.2023Vydáno v 2023 60th ACM/IEEE Design Automation Conference (DAC) (09.07.2023)“…The rapid advancement of edge and cloud computing platforms, vehicular ad-hoc networks, and machine learning techniques have brought both opportunities and…”
Získat plný text
Konferenční příspěvek -
14
Personalized Heterogeneity-aware Federated Search Towards Better Accuracy and Energy Efficiency
ISSN: 1558-2434Vydáno: ACM 29.10.2022Vydáno v 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) (29.10.2022)“…Federated learning (FL), a new distributed technology, allows us to train the global model on the edge and embedded devices without local data sharing…”
Získat plný text
Konferenční příspěvek -
15
Distributing and Load Balancing Sparse Fluid Simulations
ISSN: 0167-7055, 1467-8659Vydáno: Oxford Blackwell Publishing Ltd 01.12.2018Vydáno v Computer graphics forum (01.12.2018)“…This paper describes a general algorithm and a system for load balancing sparse fluid simulations. Automatically distributing sparse fluid simulations…”
Získat plný text
Journal Article -
16
Gluon-Async: A Bulk-Asynchronous System for Distributed and Heterogeneous Graph Analytics
ISSN: 2641-7936Vydáno: IEEE 01.09.2019Vydáno v Proceedings / International Conference on Parallel Architectures and Compilation Techniques (01.09.2019)“…Distributed graph analytics systems for CPUs, like D-Galois and Gemini, and for GPUs, like D-IrGL and Lux, use a bulk-synchronous parallel (BSP) programming…”
Získat plný text
Konferenční příspěvek -
17
FaaSConf: QoS-aware Hybrid Resources Configuration for Serverless Workflows
ISSN: 2643-1572Vydáno: ACM 27.10.2024Vydáno v IEEE/ACM International Conference on Automated Software Engineering : [proceedings] (27.10.2024)“…Serverless computing, also known as Function-as-a-Service (FaaS), is a significant development trend in modern software system architecture. The workflow…”
Získat plný text
Konferenční příspěvek -
18
Accelerating Distributed Graphical Fluid Simulations with Micro‐partitioning
ISSN: 0167-7055, 1467-8659Vydáno: Oxford Blackwell Publishing Ltd 01.02.2020Vydáno v Computer graphics forum (01.02.2020)“…Graphical fluid simulations are CPU‐bound. Parallelizing simulations on hundreds of cores in the computing cloud would make them faster, but requires evenly…”
Získat plný text
Journal Article -
19
GraNNDis: Fast Distributed Graph Neural Network Training Framework for Multi-Server Clusters
Vydáno: ACM 13.10.2024Vydáno v 2024 33rd International Conference on Parallel Architectures and Compilation Techniques (PACT) (13.10.2024)“…Graph neural networks (GNNs) are one of the rapidly growing fields within deep learning. While many distributed GNN training frameworks have been proposed to…”
Získat plný text
Konferenční příspěvek -
20
MyML: User-Driven Machine Learning
Vydáno: IEEE 05.12.2021Vydáno v 2021 58th ACM/IEEE Design Automation Conference (DAC) (05.12.2021)“…Machine learning (ML) on resource-constrained edge devices is expensive and often requires offloading computation to the cloud, which may compromise the…”
Získat plný text
Konferenční příspěvek