Suchergebnisse - "Brain-Computer Interfaces/classification"
-
1
Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network
ISSN: 0893-6080, 1879-2782, 1879-2782Veröffentlicht: United States Elsevier Ltd 01.04.2021Veröffentlicht in Neural networks (01.04.2021)“… In recent years, deep learning has emerged as a powerful tool for developing Brain–Computer Interface (BCI) systems. However, for deep learning models trained …”
Volltext
Journal Article -
2
A systematic review of hybrid brain-computer interfaces: Taxonomy and usability perspectives
ISSN: 1932-6203, 1932-6203Veröffentlicht: United States Public Library of Science 28.04.2017Veröffentlicht in PloS one (28.04.2017)“… A new Brain-Computer Interface (BCI) technique, which is called a hybrid BCI, has recently been proposed to address the limitations of conventional single BCI …”
Volltext
Journal Article -
3
Data augmentation for self-paced motor imagery classification with C-LSTM
ISSN: 1741-2560, 1741-2552, 1741-2552Veröffentlicht: England IOP Publishing 31.01.2020Veröffentlicht in Journal of neural engineering (31.01.2020)“… Objective. Brain-computer interfaces (BCI) are becoming important tools for assistive technology, particularly through the use of motor imagery (MI) for aiding …”
Volltext
Journal Article -
4
Double ErrP Detection for Automatic Error Correction in an ERP-Based BCI Speller
ISSN: 1534-4320, 1558-0210, 1558-0210Veröffentlicht: United States IEEE 01.01.2018Veröffentlicht in IEEE transactions on neural systems and rehabilitation engineering (01.01.2018)“… Brain-computer interface (BCI) is a useful device for people with severe motor disabilities. However, due to its low speed and low reliability, BCI still has a …”
Volltext
Journal Article -
5
Classification of different reaching movements from the same limb using EEG
ISSN: 1741-2560, 1741-2552, 1741-2552Veröffentlicht: England IOP Publishing 01.08.2017Veröffentlicht in Journal of neural engineering (01.08.2017)“… Objective. Brain-computer-interfaces (BCIs) have been proposed not only as assistive technologies but also as rehabilitation tools for lost functions. However, …”
Volltext
Journal Article -
6
Classification of Individual Finger Movements Using Intracortical Recordings in Human Motor Cortex
ISSN: 0148-396X, 1524-4040, 1524-4040Veröffentlicht: United States Oxford University Press 01.10.2020Veröffentlicht in Neurosurgery (01.10.2020)“… Abstract BACKGROUND Intracortical microelectrode arrays have enabled people with tetraplegia to use a brain–computer interface for reaching and grasping. In …”
Volltext
Journal Article -
7
Pure visual imagery as a potential approach to achieve three classes of control for implementation of BCI in non-motor disorders
ISSN: 1741-2552, 1741-2552Veröffentlicht: England 01.08.2017Veröffentlicht in Journal of neural engineering (01.08.2017)“… The achievement of multiple instances of control with the same type of mental strategy represents a way to improve flexibility of brain-computer interface …”
Weitere Angaben
Journal Article -
8
Integrating language models into classifiers for BCI communication: a review
ISSN: 1741-2552, 1741-2552Veröffentlicht: England 01.06.2016Veröffentlicht in Journal of neural engineering (01.06.2016)“… The present review systematically examines the integration of language models to improve classifier performance in brain-computer interface (BCI) communication …”
Weitere Angaben
Journal Article -
9
Weighted spatial based geometric scheme as an efficient algorithm for analyzing single-trial EEGS to improve cue-based BCI classification
ISSN: 0893-6080, 1879-2782, 1879-2782Veröffentlicht: United States Elsevier Ltd 01.08.2017Veröffentlicht in Neural networks (01.08.2017)“… There is a growing interest in analyzing the geometrical behavior of electroencephalogram (EEG) covariance matrix in the context of brain computer interface …”
Volltext
Journal Article -
10
A Multi-Class Tactile Brain-Computer Interface Based on Stimulus-Induced Oscillatory Dynamics
ISSN: 1534-4320, 1558-0210, 1558-0210Veröffentlicht: United States IEEE 01.01.2018Veröffentlicht in IEEE transactions on neural systems and rehabilitation engineering (01.01.2018)“… We proposed a multi-class tactile brain-computer interface that utilizes stimulus-induced oscillatory dynamics. It was hypothesized that somatosensory …”
Volltext
Journal Article -
11
Sparse representation-based classification scheme for motor imagery-based brain-computer interface systems
ISSN: 1741-2552, 1741-2552Veröffentlicht: England 01.10.2012Veröffentlicht in Journal of neural engineering (01.10.2012)“… Motor imagery (MI)-based brain-computer interface systems (BCIs) normally use a powerful spatial filtering and classification method to maximize their …”
Weitere Angaben
Journal Article -
12
Invariance and variability in interaction error-related potentials and their consequences for classification
ISSN: 1741-2552, 1741-2552Veröffentlicht: England 01.12.2017Veröffentlicht in Journal of neural engineering (01.12.2017)“… This paper discusses the invariance and variability in interaction error-related potentials (ErrPs), where a special focus is laid upon the factors of (1) the …”
Weitere Angaben
Journal Article -
13
A hybrid three-class brain-computer interface system utilizing SSSEPs and transient ERPs
ISSN: 1741-2552, 1741-2552Veröffentlicht: England 01.12.2016Veröffentlicht in Journal of neural engineering (01.12.2016)“… This paper investigates the fusion of steady-state somatosensory evoked potentials (SSSEPs) and transient event-related potentials (tERPs), evoked through …”
Weitere Angaben
Journal Article -
14
Self-recalibrating classifiers for intracortical brain-computer interfaces
ISSN: 1741-2552, 1741-2552Veröffentlicht: England 01.04.2014Veröffentlicht in Journal of neural engineering (01.04.2014)“… Intracortical brain-computer interface (BCI) decoders are typically retrained daily to maintain stable performance. Self-recalibrating decoders aim to remove …”
Weitere Angaben
Journal Article -
15
Covert Verb Reading Contributes to Signal Classification of Motor Imagery in BCI
ISSN: 1534-4320, 1558-0210, 1558-0210Veröffentlicht: United States IEEE 01.01.2018Veröffentlicht in IEEE transactions on neural systems and rehabilitation engineering (01.01.2018)“… Motor imagery is widely used in the brain-computer interface (BCI) systems that can help people actively control devices to directly communicate with the …”
Volltext
Journal Article -
16
Tensor-based classification of an auditory mobile BCI without a subject-specific calibration phase
ISSN: 1741-2552Veröffentlicht: England 01.04.2016Veröffentlicht in Journal of neural engineering (01.04.2016)“… One of the major drawbacks in EEG brain-computer interfaces (BCI) is the need for subject-specific training of the classifier. By removing the need for a …”
Weitere Angaben
Journal Article -
17
A comparison of classification techniques for a gaze-independent P300-based brain-computer interface
ISSN: 1741-2552, 1741-2552Veröffentlicht: England 01.08.2012Veröffentlicht in Journal of neural engineering (01.08.2012)“… This off-line study aims to assess the performance of five classifiers commonly used in the brain-computer interface (BCI) community, when applied to a …”
Weitere Angaben
Journal Article -
18
Classifier-based latency estimation: a novel way to estimate and predict BCI accuracy
ISSN: 1741-2552, 1741-2552Veröffentlicht: England 01.02.2013Veröffentlicht in Journal of neural engineering (01.02.2013)“… Brain-computer interfaces (BCIs) that detect event-related potentials (ERPs) rely on classification schemes that are vulnerable to latency jitter, a phenomenon …”
Weitere Angaben
Journal Article -
19
Discriminative Methods for Classification of Asynchronous Imaginary Motor Tasks From EEG Data
ISSN: 1534-4320, 1558-0210, 1558-0210Veröffentlicht: United States IEEE 01.09.2013Veröffentlicht in IEEE transactions on neural systems and rehabilitation engineering (01.09.2013)“… In this work, two methods based on statistical models that take into account the temporal changes in the electroencephalographic (EEG) signal are proposed for …”
Volltext
Journal Article -
20
Employing an active mental task to enhance the performance of auditory attention-based brain–computer interfaces
ISSN: 1388-2457, 1872-8952, 1872-8952Veröffentlicht: Oxford Elsevier Ireland Ltd 01.01.2013Veröffentlicht in Clinical neurophysiology (01.01.2013)“… ► The active mental task (AMT) generated a stronger late positive ERP response other than the P300 evoked by a traditional oddball counting paradigm. ► The AMT …”
Volltext
Journal Article