Suchergebnisse - "Brain-Computer Interfaces/classification"

  • Treffer 1 - 20 von 20
Treffer weiter einschränken
  1. 1

    Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network von Zhang, Kaishuo, Robinson, Neethu, Lee, Seong-Whan, Guan, Cuntai

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Veröffentlicht: United States Elsevier Ltd 01.04.2021
    Veröffentlicht in Neural networks (01.04.2021)
    “… In recent years, deep learning has emerged as a powerful tool for developing Brain–Computer Interface (BCI) systems. However, for deep learning models trained …”
    Volltext
    Journal Article
  2. 2

    A systematic review of hybrid brain-computer interfaces: Taxonomy and usability perspectives von Choi, Inchul, Rhiu, Ilsun, Lee, Yushin, Yun, Myung Hwan, Nam, Chang S.

    ISSN: 1932-6203, 1932-6203
    Veröffentlicht: United States Public Library of Science 28.04.2017
    Veröffentlicht in PloS one (28.04.2017)
    “… A new Brain-Computer Interface (BCI) technique, which is called a hybrid BCI, has recently been proposed to address the limitations of conventional single BCI …”
    Volltext
    Journal Article
  3. 3

    Data augmentation for self-paced motor imagery classification with C-LSTM von Freer, Daniel, Yang, Guang-Zhong

    ISSN: 1741-2560, 1741-2552, 1741-2552
    Veröffentlicht: England IOP Publishing 31.01.2020
    Veröffentlicht in Journal of neural engineering (31.01.2020)
    “… Objective. Brain-computer interfaces (BCI) are becoming important tools for assistive technology, particularly through the use of motor imagery (MI) for aiding …”
    Volltext
    Journal Article
  4. 4

    Double ErrP Detection for Automatic Error Correction in an ERP-Based BCI Speller von Cruz, Aniana, Pires, Gabriel, Nunes, Urbano J.

    ISSN: 1534-4320, 1558-0210, 1558-0210
    Veröffentlicht: United States IEEE 01.01.2018
    “… Brain-computer interface (BCI) is a useful device for people with severe motor disabilities. However, due to its low speed and low reliability, BCI still has a …”
    Volltext
    Journal Article
  5. 5

    Classification of different reaching movements from the same limb using EEG von Shiman, Farid, López-Larraz, Eduardo, Sarasola-Sanz, Andrea, Irastorza-Landa, Nerea, Spüler, Martin, Birbaumer, Niels, Ramos-Murguialday, Ander

    ISSN: 1741-2560, 1741-2552, 1741-2552
    Veröffentlicht: England IOP Publishing 01.08.2017
    Veröffentlicht in Journal of neural engineering (01.08.2017)
    “… Objective. Brain-computer-interfaces (BCIs) have been proposed not only as assistive technologies but also as rehabilitation tools for lost functions. However, …”
    Volltext
    Journal Article
  6. 6

    Classification of Individual Finger Movements Using Intracortical Recordings in Human Motor Cortex von Jorge, Ahmed, Royston, Dylan A, Tyler-Kabara, Elizabeth C, Boninger, Michael L, Collinger, Jennifer L

    ISSN: 0148-396X, 1524-4040, 1524-4040
    Veröffentlicht: United States Oxford University Press 01.10.2020
    Veröffentlicht in Neurosurgery (01.10.2020)
    “… Abstract BACKGROUND Intracortical microelectrode arrays have enabled people with tetraplegia to use a brain–computer interface for reaching and grasping. In …”
    Volltext
    Journal Article
  7. 7

    Pure visual imagery as a potential approach to achieve three classes of control for implementation of BCI in non-motor disorders von Sousa, Teresa, Amaral, Carlos, Andrade, João, Pires, Gabriel, Nunes, Urbano J, Castelo-Branco, Miguel

    ISSN: 1741-2552, 1741-2552
    Veröffentlicht: England 01.08.2017
    Veröffentlicht in Journal of neural engineering (01.08.2017)
    “… The achievement of multiple instances of control with the same type of mental strategy represents a way to improve flexibility of brain-computer interface …”
    Weitere Angaben
    Journal Article
  8. 8

    Integrating language models into classifiers for BCI communication: a review von Speier, W, Arnold, C, Pouratian, N

    ISSN: 1741-2552, 1741-2552
    Veröffentlicht: England 01.06.2016
    Veröffentlicht in Journal of neural engineering (01.06.2016)
    “… The present review systematically examines the integration of language models to improve classifier performance in brain-computer interface (BCI) communication …”
    Weitere Angaben
    Journal Article
  9. 9

    Weighted spatial based geometric scheme as an efficient algorithm for analyzing single-trial EEGS to improve cue-based BCI classification von Alimardani, Fatemeh, Boostani, Reza, Blankertz, Benjamin

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Veröffentlicht: United States Elsevier Ltd 01.08.2017
    Veröffentlicht in Neural networks (01.08.2017)
    “… There is a growing interest in analyzing the geometrical behavior of electroencephalogram (EEG) covariance matrix in the context of brain computer interface …”
    Volltext
    Journal Article
  10. 10

    A Multi-Class Tactile Brain-Computer Interface Based on Stimulus-Induced Oscillatory Dynamics von Yao, Lin, Chen, Mei Lin, Sheng, Xinjun, Mrachacz-Kersting, Natalie, Zhu, Xiangyang, Farina, Dario, Jiang, Ning

    ISSN: 1534-4320, 1558-0210, 1558-0210
    Veröffentlicht: United States IEEE 01.01.2018
    “… We proposed a multi-class tactile brain-computer interface that utilizes stimulus-induced oscillatory dynamics. It was hypothesized that somatosensory …”
    Volltext
    Journal Article
  11. 11

    Sparse representation-based classification scheme for motor imagery-based brain-computer interface systems von Shin, Younghak, Lee, Seungchan, Lee, Junho, Lee, Heung-No

    ISSN: 1741-2552, 1741-2552
    Veröffentlicht: England 01.10.2012
    Veröffentlicht in Journal of neural engineering (01.10.2012)
    “… Motor imagery (MI)-based brain-computer interface systems (BCIs) normally use a powerful spatial filtering and classification method to maximize their …”
    Weitere Angaben
    Journal Article
  12. 12

    Invariance and variability in interaction error-related potentials and their consequences for classification von Abu-Alqumsan, Mohammad, Kapeller, Christoph, Hintermüller, Christoph, Guger, Christoph, Peer, Angelika

    ISSN: 1741-2552, 1741-2552
    Veröffentlicht: England 01.12.2017
    Veröffentlicht in Journal of neural engineering (01.12.2017)
    “… This paper discusses the invariance and variability in interaction error-related potentials (ErrPs), where a special focus is laid upon the factors of (1) the …”
    Weitere Angaben
    Journal Article
  13. 13

    A hybrid three-class brain-computer interface system utilizing SSSEPs and transient ERPs von Breitwieser, Christian, Pokorny, Christoph, Müller-Putz, Gernot R

    ISSN: 1741-2552, 1741-2552
    Veröffentlicht: England 01.12.2016
    Veröffentlicht in Journal of neural engineering (01.12.2016)
    “… This paper investigates the fusion of steady-state somatosensory evoked potentials (SSSEPs) and transient event-related potentials (tERPs), evoked through …”
    Weitere Angaben
    Journal Article
  14. 14

    Self-recalibrating classifiers for intracortical brain-computer interfaces von Bishop, William, Chestek, Cynthia C, Gilja, Vikash, Nuyujukian, Paul, Foster, Justin D, Ryu, Stephen I, Shenoy, Krishna V, Yu, Byron M

    ISSN: 1741-2552, 1741-2552
    Veröffentlicht: England 01.04.2014
    Veröffentlicht in Journal of neural engineering (01.04.2014)
    “… Intracortical brain-computer interface (BCI) decoders are typically retrained daily to maintain stable performance. Self-recalibrating decoders aim to remove …”
    Weitere Angaben
    Journal Article
  15. 15

    Covert Verb Reading Contributes to Signal Classification of Motor Imagery in BCI von Zhang, Hong, Sun, Yaoru, Li, Jie, Wang, Fang, Wang, Zijian

    ISSN: 1534-4320, 1558-0210, 1558-0210
    Veröffentlicht: United States IEEE 01.01.2018
    “… Motor imagery is widely used in the brain-computer interface (BCI) systems that can help people actively control devices to directly communicate with the …”
    Volltext
    Journal Article
  16. 16

    Tensor-based classification of an auditory mobile BCI without a subject-specific calibration phase von Zink, Rob, Hunyadi, Borbála, Huffel, Sabine Van, Vos, Maarten De

    ISSN: 1741-2552
    Veröffentlicht: England 01.04.2016
    Veröffentlicht in Journal of neural engineering (01.04.2016)
    “… One of the major drawbacks in EEG brain-computer interfaces (BCI) is the need for subject-specific training of the classifier. By removing the need for a …”
    Weitere Angaben
    Journal Article
  17. 17

    A comparison of classification techniques for a gaze-independent P300-based brain-computer interface von Aloise, F, Schettini, F, Aricò, P, Salinari, S, Babiloni, F, Cincotti, F

    ISSN: 1741-2552, 1741-2552
    Veröffentlicht: England 01.08.2012
    Veröffentlicht in Journal of neural engineering (01.08.2012)
    “… This off-line study aims to assess the performance of five classifiers commonly used in the brain-computer interface (BCI) community, when applied to a …”
    Weitere Angaben
    Journal Article
  18. 18

    Classifier-based latency estimation: a novel way to estimate and predict BCI accuracy von Thompson, David E, Warschausky, Seth, Huggins, Jane E

    ISSN: 1741-2552, 1741-2552
    Veröffentlicht: England 01.02.2013
    Veröffentlicht in Journal of neural engineering (01.02.2013)
    “… Brain-computer interfaces (BCIs) that detect event-related potentials (ERPs) rely on classification schemes that are vulnerable to latency jitter, a phenomenon …”
    Weitere Angaben
    Journal Article
  19. 19

    Discriminative Methods for Classification of Asynchronous Imaginary Motor Tasks From EEG Data von Delgado Saa, Jaime F., Cetin, Mujdat

    ISSN: 1534-4320, 1558-0210, 1558-0210
    Veröffentlicht: United States IEEE 01.09.2013
    “… In this work, two methods based on statistical models that take into account the temporal changes in the electroencephalographic (EEG) signal are proposed for …”
    Volltext
    Journal Article
  20. 20

    Employing an active mental task to enhance the performance of auditory attention-based brain–computer interfaces von Xu, Honglai, Zhang, Dan, Ouyang, Minhui, Hong, Bo

    ISSN: 1388-2457, 1872-8952, 1872-8952
    Veröffentlicht: Oxford Elsevier Ireland Ltd 01.01.2013
    Veröffentlicht in Clinical neurophysiology (01.01.2013)
    “… ► The active mental task (AMT) generated a stronger late positive ERP response other than the P300 evoked by a traditional oddball counting paradigm. ► The AMT …”
    Volltext
    Journal Article