Suchergebnisse - "Biometrika"
-
1
Identifying Causal Effects With Proxy Variables of an Unmeasured Confounder
ISSN: 0006-3444Veröffentlicht: England 01.12.2018Veröffentlicht in Biometrika (01.12.2018)“… We consider a causal effect that is confounded by an unobserved variable, but with observed proxy variables of the confounder. We show that, with at least two …”
Weitere Angaben
Journal Article -
2
Localized conformal prediction: a generalized inference framework for conformal prediction
ISSN: 0006-3444, 1464-3510Veröffentlicht: Oxford University Press 01.03.2023Veröffentlicht in Biometrika (01.03.2023)“… Summary We propose a new inference framework called localized conformal prediction. It generalizes the framework of conformal prediction by offering a …”
Volltext
Journal Article -
3
Jeffreys-prior penalty, finiteness and shrinkage in binomial-response generalized linear models
ISSN: 0006-3444, 1464-3510Veröffentlicht: Oxford University Press 01.03.2021Veröffentlicht in Biometrika (01.03.2021)“… Summary Penalization of the likelihood by Jeffreys’ invariant prior, or a positive power thereof, is shown to produce finite-valued maximum penalized …”
Volltext
Journal Article -
4
Seeded binary segmentation: a general methodology for fast and optimal changepoint detection
ISSN: 0006-3444, 1464-3510Veröffentlicht: Oxford University Press 01.03.2023Veröffentlicht in Biometrika (01.03.2023)“… Summary We propose seeded binary segmentation for large-scale changepoint detection problems. We construct a deterministic set of background intervals, called …”
Volltext
Journal Article -
5
General Bayesian updating and the loss-likelihood bootstrap
ISSN: 0006-3444, 1464-3510Veröffentlicht: Oxford University Press 01.06.2019Veröffentlicht in Biometrika (01.06.2019)“… Summary In this paper we revisit the weighted likelihood bootstrap, a method that generates samples from an approximate Bayesian posterior of a parametric …”
Volltext
Journal Article -
6
On the marginal likelihood and cross-validation
ISSN: 0006-3444, 1464-3510Veröffentlicht: Oxford University Press 01.06.2020Veröffentlicht in Biometrika (01.06.2020)“… Summary In Bayesian statistics, the marginal likelihood, also known as the evidence, is used to evaluate model fit as it quantifies the joint probability of …”
Volltext
Journal Article -
7
Doubly robust nonparametric inference on the average treatment effect
ISSN: 0006-3444Veröffentlicht: England 01.12.2017Veröffentlicht in Biometrika (01.12.2017)“… Doubly robust estimators are widely used to draw inference about the average effect of a treatment. Such estimators are consistent for the effect of interest …”
Weitere Angaben
Journal Article -
8
Bayesian cumulative shrinkage for infinite factorizations
ISSN: 0006-3444Veröffentlicht: 01.09.2020Veröffentlicht in Biometrika (01.09.2020)“… The dimension of the parameter space is typically unknown in a variety of models that rely on factorizations. For example, in factor analysis the number of …”
Weitere Angaben
Journal Article -
9
Covariate-assisted spectral clustering
ISSN: 0006-3444Veröffentlicht: England 01.06.2017Veröffentlicht in Biometrika (01.06.2017)“… Biological and social systems consist of myriad interacting units. The interactions can be represented in the form of a graph or network. Measurements of these …”
Weitere Angaben
Journal Article -
10
Gene hunting with hidden Markov model knockoffs
ISSN: 0006-3444Veröffentlicht: England 01.03.2019Veröffentlicht in Biometrika (01.03.2019)“… Modern scientific studies often require the identification of a subset of explanatory variables. Several statistical methods have been developed to automate …”
Weitere Angaben
Journal Article -
11
Splitting strategies for post-selection inference
ISSN: 0006-3444, 1464-3510Veröffentlicht: Oxford University Press 01.09.2023Veröffentlicht in Biometrika (01.09.2023)“… Summary We consider the problem of providing valid inference for a selected parameter in a sparse regression setting. It is well known that classical …”
Volltext
Journal Article -
12
High-dimensional peaks-over-threshold inference
ISSN: 0006-3444, 1464-3510Veröffentlicht: Oxford University Press 01.09.2018Veröffentlicht in Biometrika (01.09.2018)“… Summary Max-stable processes are increasingly widely used for modelling complex extreme events, but existing fitting methods are computationally demanding, …”
Volltext
Journal Article -
13
Fast and powerful conditional randomization testing via distillation
ISSN: 0006-3444Veröffentlicht: England 01.06.2022Veröffentlicht in Biometrika (01.06.2022)“… We consider the problem of conditional independence testing: given a response and covariates , we test the null hypothesis that . The conditional randomization …”
Weitere Angaben
Journal Article -
14
Kernel-based covariate functional balancing for observational studies
ISSN: 0006-3444Veröffentlicht: England 01.03.2018Veröffentlicht in Biometrika (01.03.2018)“… Covariate balance is often advocated for objective causal inference since it mimics randomization in observational data. Unlike methods that balance specific …”
Weitere Angaben
Journal Article -
15
Valid sequential inference on probability forecast performance
ISSN: 0006-3444, 1464-3510Veröffentlicht: Oxford University Press 01.09.2022Veröffentlicht in Biometrika (01.09.2022)“… Summary Probability forecasts for binary events play a central role in many applications. Their quality is commonly assessed with proper scoring rules, which …”
Volltext
Journal Article -
16
Maximum likelihood estimation for semiparametric transformation models with interval-censored data
ISSN: 0006-3444Veröffentlicht: England 01.06.2016Veröffentlicht in Biometrika (01.06.2016)“… Interval censoring arises frequently in clinical, epidemiological, financial and sociological studies, where the event or failure of interest is known only to …”
Weitere Angaben
Journal Article -
17
Model-assisted design of experiments in the presence of network-correlated outcomes
ISSN: 0006-3444, 1464-3510Veröffentlicht: Oxford University Press 01.12.2018Veröffentlicht in Biometrika (01.12.2018)“… SUMMARY In this paper we consider how to assign treatment in a randomized experiment in which the correlation among the outcomes is informed by a network …”
Volltext
Journal Article -
18
Tree-based methods for individualized treatment regimes
ISSN: 0006-3444Veröffentlicht: England 01.09.2015Veröffentlicht in Biometrika (01.09.2015)“… Individualized treatment rules recommend treatments on the basis of individual patient characteristics. A high-quality treatment rule can produce better …”
Weitere Angaben
Journal Article -
19
Spectral adjustment for spatial confounding
ISSN: 0006-3444Veröffentlicht: England 01.09.2023Veröffentlicht in Biometrika (01.09.2023)“… Adjusting for an unmeasured confounder is generally an intractable problem, but in the spatial setting it may be possible under certain conditions. We derive …”
Weitere Angaben
Journal Article -
20
Efficient Estimation under Data Fusion
ISSN: 0006-3444Veröffentlicht: 01.12.2023Veröffentlicht in Biometrika (01.12.2023)“… We aim to make inferences about a smooth, finite-dimensional parameter by fusing data from multiple sources together. Previous works have studied the …”
Weitere Angaben
Journal Article