Suchergebnisse - "Bayesian autoencoder"

  • Treffer 1 - 7 von 7
Treffer weiter einschränken
  1. 1

    Towards trustworthy cybersecurity operations using Bayesian Deep Learning to improve uncertainty quantification of anomaly detection von Yang, Tengfei, Qiao, Yuansong, Lee, Brian

    ISSN: 0167-4048
    Veröffentlicht: Elsevier Ltd 01.09.2024
    Veröffentlicht in Computers & security (01.09.2024)
    “… Uncertainty quantification of cybersecurity anomaly detection results provides critical guidance for decision makers on whether or not to accept the results …”
    Volltext
    Journal Article
  2. 2

    Explaining Probabilistic Bayesian Neural Networks for Cybersecurity Intrusion Detection von Yang, Tengfei, Qiao, Yuansong, Lee, Brian

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: IEEE 2024
    Veröffentlicht in IEEE access (2024)
    “… The probabilistic Bayesian neural network(BNN) is good at providing trustworthy outcomes that is important, e.g. in intrusion detection. Due to the complex of …”
    Volltext
    Journal Article
  3. 3

    Variational Bayesian Autoencoder for Channel Compression and Feedback in Massive MIMO Systems von Zheng, Xuanyu, Bi, Yuanyuan, Guo, Huayan, Lau, Vincent

    ISSN: 1938-1883
    Veröffentlicht: IEEE 28.05.2023
    “… In this paper, we propose a Variational Bayesian Autoencoder (VBA)-based channel state information (CSI) compression and feedback scheme for massive …”
    Volltext
    Tagungsbericht
  4. 4

    Energy-Aware Anomaly Detection in Wind Turbine SCADA Systems von Ciocan, Angela Voinea, Hamrioui, Sofiane, Lorenz, Pascal, Courboulay, Vincent, Ciocan, Adrian

    ISSN: 1847-358X
    Veröffentlicht: University of Split, FESB 18.09.2025
    “… This paper presents a hybrid AI-based framework for robust anomaly detection in wind turbine SCADA systems, combining Bayesian Autoencoders with Transformer …”
    Volltext
    Tagungsbericht
  5. 5

    Bayesian Autoencoders for Drift Detection in Industrial Environments von Yong, Bang Xiang, Fathy, Yasmin, Brintrup, Alexandra

    Veröffentlicht: IEEE 01.06.2020
    “… Autoencoders are unsupervised models which have been used for detecting anomalies in multi-sensor environments. A typical use includes training a predictive …”
    Volltext
    Tagungsbericht
  6. 6

    Bayesian autoencoders with uncertainty quantification: Towards trustworthy anomaly detection von Yong, Bang Xiang, Brintrup, Alexandra

    ISSN: 0957-4174, 1873-6793
    Veröffentlicht: Elsevier Ltd 15.12.2022
    Veröffentlicht in Expert systems with applications (15.12.2022)
    “… Despite numerous studies of deep autoencoders (AEs) for unsupervised anomaly detection, AEs still lack a way to express uncertainty in their predictions, …”
    Volltext
    Journal Article
  7. 7

    Coalitional Bayesian autoencoders: Towards explainable unsupervised deep learning with applications to condition monitoring under covariate shift von Yong, Bang Xiang, Brintrup, Alexandra

    ISSN: 1568-4946
    Veröffentlicht: Elsevier B.V 01.07.2022
    Veröffentlicht in Applied soft computing (01.07.2022)
    “… This paper aims to improve the explainability of autoencoder (AE) predictions by proposing two novel explanation methods based on the mean and epistemic …”
    Volltext
    Journal Article