Suchergebnisse - "Basu, Ayanendranath"

  1. 1

    Robust estimation in generalized linear models: the density power divergence approach von Ghosh, Abhik, Basu, Ayanendranath

    ISSN: 1133-0686, 1863-8260
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2016
    Veröffentlicht in Test (Madrid, Spain) (01.06.2016)
    “… The generalized linear model is a very important tool for analyzing real data in several application domains where the relationship between the response and …”
    Volltext
    Journal Article
  2. 2

    A Characterization of All Single-Integral, Non-Kernel Divergence Estimators von Jana, Soham, Basu, Ayanendranath

    ISSN: 0018-9448, 1557-9654
    Veröffentlicht: New York IEEE 01.12.2019
    Veröffentlicht in IEEE transactions on information theory (01.12.2019)
    “… Divergence measures have been used for a long time for different purposes in information theory and statistics. In particular, density-based minimum divergence …”
    Volltext
    Journal Article
  3. 3

    A New Family of Divergences Originating From Model Adequacy Tests and Application to Robust Statistical Inference von Ghosh, Abhik, Basu, Ayanendranath

    ISSN: 0018-9448, 1557-9654
    Veröffentlicht: New York IEEE 01.08.2018
    Veröffentlicht in IEEE transactions on information theory (01.08.2018)
    “… Minimum divergence methods are popular tools in a variety of statistical applications. We consider tubular model adequacy tests, and demonstrate that the new …”
    Volltext
    Journal Article
  4. 4

    Characterizing the Functional Density Power Divergence Class von Ray, Souvik, Pal, Subrata, Kar, Sumit Kumar, Basu, Ayanendranath

    ISSN: 0018-9448, 1557-9654
    Veröffentlicht: New York IEEE 01.02.2023
    Veröffentlicht in IEEE transactions on information theory (01.02.2023)
    “… Divergence measures have a long association with statistical inference, machine learning and information theory. The density power divergence and related …”
    Volltext
    Journal Article
  5. 5

    Robust Wald‐type tests under random censoring von Ghosh, Abhik, Basu, Ayanendranath, Pardo, Leandro

    ISSN: 0277-6715, 1097-0258, 1097-0258
    Veröffentlicht: England Wiley Subscription Services, Inc 28.02.2021
    Veröffentlicht in Statistics in medicine (28.02.2021)
    “… Randomly censored survival data are frequently encountered in biomedical or reliability applications and clinical trial analyses. Testing the significance of …”
    Volltext
    Journal Article
  6. 6

    Statistical Inference: The Minimum Distance Approach von Basu, Ayanendranath, Shioya, Hiroyuki, Park, Chanseok

    ISBN: 9781420099652, 1420099655
    Veröffentlicht: Boca Raton Chapman and Hall/CRC 2011
    “… This book gives a comprehensive account of density-based minimum distance methods and their use in statistical inference. It covers statistical distances, …”
    Volltext
    E-Book Buch
  7. 7

    Robust singular value decomposition with application to video surveillance background modelling von Roy, Subhrajyoty, Ghosh, Abhik, Basu, Ayanendranath

    ISSN: 0960-3174, 1573-1375
    Veröffentlicht: New York Springer US 01.10.2024
    Veröffentlicht in Statistics and computing (01.10.2024)
    “… The traditional method of computing singular value decomposition (SVD) of a data matrix is based on the least squares principle and is, therefore, very …”
    Volltext
    Journal Article
  8. 8

    Robust estimation for non-homogeneous data and the selection of the optimal tuning parameter: the density power divergence approach von Ghosh, Abhik, Basu, Ayanendranath

    ISSN: 0266-4763, 1360-0532
    Veröffentlicht: Abingdon Taylor & Francis 02.09.2015
    Veröffentlicht in Journal of applied statistics (02.09.2015)
    “… The density power divergence (DPD) measure, defined in terms of a single parameter α, has proved to be a popular tool in the area of robust estimation [ 1 ] …”
    Volltext
    Journal Article
  9. 9

    Robust inference for skewed data in health sciences von Nandy, Amarnath, Basu, Ayanendranath, Ghosh, Abhik

    ISSN: 0266-4763, 1360-0532
    Veröffentlicht: England Taylor & Francis 11.06.2022
    Veröffentlicht in Journal of applied statistics (11.06.2022)
    “… Health data are often not symmetric to be adequately modeled through the usual normal distributions; most of them exhibit skewed patterns. They can indeed be …”
    Volltext
    Journal Article
  10. 10

    Robust estimation of fixed effect parameters and variances of linear mixed models: the minimum density power divergence approach von Saraceno, Giovanni, Ghosh, Abhik, Basu, Ayanendranath, Agostinelli, Claudio

    ISSN: 1863-8171, 1863-818X
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2024
    “… Many real-life data sets can be analyzed using linear mixed models (LMMs). Since these are ordinarily based on normality assumptions, under small deviations …”
    Volltext
    Journal Article
  11. 11

    A Generalized Relative (α, β)-Entropy: Geometric Properties and Applications to Robust Statistical Inference von Ghosh, Abhik, Basu, Ayanendranath

    ISSN: 1099-4300, 1099-4300
    Veröffentlicht: Basel MDPI AG 06.05.2018
    Veröffentlicht in Entropy (Basel, Switzerland) (06.05.2018)
    “… Entropy and relative entropy measures play a crucial role in mathematical information theory. The relative entropies are also widely used in statistics under …”
    Volltext
    Journal Article
  12. 12
  13. 13

    Statistical inference based on bridge divergences von Kuchibhotla, Arun Kumar, Mukherjee, Somabha, Basu, Ayanendranath

    ISSN: 0020-3157, 1572-9052
    Veröffentlicht: Tokyo Springer Japan 01.06.2019
    Veröffentlicht in Annals of the Institute of Statistical Mathematics (01.06.2019)
    “… M -estimators offer simple robust alternatives to the maximum likelihood estimator. The density power divergence (DPD) and the logarithmic density power …”
    Volltext
    Journal Article
  14. 14

    Robust statistical inference based on the C-divergence family von Maji, Avijit, Ghosh, Abhik, Basu, Ayanendranath, Pardo, Leandro

    ISSN: 0020-3157, 1572-9052
    Veröffentlicht: Tokyo Springer Japan 01.10.2019
    Veröffentlicht in Annals of the Institute of Statistical Mathematics (01.10.2019)
    “… This paper describes a family of divergences, named herein as the C -divergence family, which is a generalized version of the power divergence family and also …”
    Volltext
    Journal Article
  15. 15

    Robust Inference Using the Exponential-Polynomial Divergence von Singh, Pushpinder, Mandal, Abhijit, Basu, Ayanendranath

    ISSN: 1559-8608, 1559-8616
    Veröffentlicht: Cham Springer International Publishing 01.06.2021
    Veröffentlicht in Journal of statistical theory and practice (01.06.2021)
    “… Density-based minimum divergence procedures represent popular techniques in parametric statistical inference. They combine strong robustness properties with …”
    Volltext
    Journal Article
  16. 16
  17. 17

    Robust Wald-type tests in GLM with random design based on minimum density power divergence estimators von Basu, Ayanendranath, Ghosh, Abhik, Mandal, Abhijit, Martin, Nirian, Pardo, Leandro

    ISSN: 1618-2510, 1613-981X
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2021
    Veröffentlicht in Statistical methods & applications (01.09.2021)
    “… We consider the problem of robust inference under the generalized linear model (GLM) with stochastic covariates. We derive the properties of the minimum …”
    Volltext
    Journal Article
  18. 18

    Statistical inference based on a new weighted likelihood approach von Majumder, Suman, Biswas, Adhidev, Roy, Tania, Bhandari, Subir Kumar, Basu, Ayanendranath

    ISSN: 0026-1335, 1435-926X
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2021
    Veröffentlicht in Metrika (01.01.2021)
    “… We discuss a new weighted likelihood method for robust parametric estimation. The method is motivated by the need for generating a simple estimation strategy …”
    Volltext
    Journal Article
  19. 19

    On the robustness of a divergence based test of simple statistical hypotheses von Ghosh, Abhik, Basu, Ayanendranath, Pardo, Leandro

    ISSN: 0378-3758, 1873-1171
    Veröffentlicht: Elsevier B.V 01.06.2015
    Veröffentlicht in Journal of statistical planning and inference (01.06.2015)
    “… The most popular hypothesis testing procedure, the likelihood ratio test, is known to be highly non-robust in many real situations. Basu et al. (2013a) …”
    Volltext
    Journal Article
  20. 20

    Does the generalized mean have the potential to control outliers? von Mukhopadhyay, Soumalya, Das, Amlan Jyoti, Basu, Ayanendranath, Chatterjee, Aditya, Bhattacharya, Sabyasachi

    ISSN: 0361-0926, 1532-415X
    Veröffentlicht: Philadelphia Taylor & Francis 18.04.2021
    Veröffentlicht in Communications in statistics. Theory and methods (18.04.2021)
    “… The efficacy of the generalized mean in controlling outliers is explored in this paper. We found that in the presence of outliers in the data, the generalized …”
    Volltext
    Journal Article