Výsledky vyhľadávania - "Autoencoder regularization"

  • Zobrazené výsledky 1 - 4 z 4
Upresniť hľadanie
  1. 1

    SVD-AE: An asymmetric autoencoder with SVD regularization for multivariate time series anomaly detection Autor Yao, Yueyue, Ma, Jianghong, Feng, Shanshan, Ye, Yunming

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Vydavateľské údaje: United States Elsevier Ltd 01.02.2024
    Vydané v Neural networks (01.02.2024)
    “…Anomaly detection in multivariate time series is of critical importance in many real-world applications, such as system maintenance and Internet monitoring. In…”
    Získať plný text
    Journal Article
  2. 2

    Multiscale CNN With Autoencoder Regularization Joint Contextual Attention Network for SAR Image Classification Autor Wu, Zitong, Hou, Biao, Jiao, Licheng

    ISSN: 0196-2892, 1558-0644
    Vydavateľské údaje: New York IEEE 01.02.2021
    “…Synthetic aperture radar (SAR) image classification is a fundamental research direction in image interpretation. With the development of various intelligent…”
    Získať plný text
    Journal Article
  3. 3

    Fat-saturated image generation from multi-contrast MRIs using generative adversarial networks with Bloch equation-based autoencoder regularization Autor Kim, Sewon, Jang, Hanbyol, Hong, Seokjun, Hong, Yeong Sang, Bae, Won C., Kim, Sungjun, Hwang, Dosik

    ISSN: 1361-8415, 1361-8423, 1361-8423
    Vydavateľské údaje: Amsterdam Elsevier B.V 01.10.2021
    Vydané v Medical image analysis (01.10.2021)
    “…•Bloch equation-based autoencoder regularization GAN (BlochGAN).•BlochGAN uses multi-contrast MR images to generate other contrast images.•BlochGAN can learn…”
    Získať plný text
    Journal Article
  4. 4

    Attention-guided salient object detection using autoencoder regularization Autor Xu, Cheng, Liu, Xianhui, Zhao, Weidong

    ISSN: 0924-669X, 1573-7497
    Vydavateľské údaje: New York Springer US 01.03.2023
    “…A saliency detection task simulates the attention mechanism of the human visual system, which focuses on what draws the most attention in a picture, and…”
    Získať plný text
    Journal Article