Suchergebnisse - "Autoencoder network"
-
1
Towards Enhanced Interpretability: A Mechanism-Driven domain adaptation model for bearing fault diagnosis across operating conditions
ISSN: 0888-3270Veröffentlicht: Elsevier Ltd 15.02.2025Veröffentlicht in Mechanical systems and signal processing (15.02.2025)“… Deep learning has emerged as a formidable tool in bearing fault diagnosis, yet its effectiveness is often hampered by the opaqueness of feature interpretation …”
Volltext
Journal Article -
2
Softmax regression based deep sparse autoencoder network for facial emotion recognition in human-robot interaction
ISSN: 0020-0255, 1872-6291Veröffentlicht: Elsevier Inc 01.02.2018Veröffentlicht in Information sciences (01.02.2018)“… Deep neural network (DNN) has been used as a learning model for modeling the hierarchical architecture of human brain. However, DNN suffers from problems of …”
Volltext
Journal Article -
3
DAEN: Deep Autoencoder Networks for Hyperspectral Unmixing
ISSN: 0196-2892, 1558-0644Veröffentlicht: New York IEEE 01.07.2019Veröffentlicht in IEEE transactions on geoscience and remote sensing (01.07.2019)“… Spectral unmixing is a technique for remotely sensed image interpretation that expresses each (possibly mixed) pixel as a combination of pure spectral …”
Volltext
Journal Article -
4
An unsupervised feature learning based health indicator construction method for performance assessment of machines
ISSN: 0888-3270, 1096-1216Veröffentlicht: Berlin Elsevier Ltd 15.03.2022Veröffentlicht in Mechanical systems and signal processing (15.03.2022)“… •A multi-scale CAE network is used to extract features from three scale levels.•Only the data collected under health conditions are used for network …”
Volltext
Journal Article -
5
Sequential three-way decision based on multi-granular autoencoder features
ISSN: 0020-0255, 1872-6291Veröffentlicht: Elsevier Inc 01.01.2020Veröffentlicht in Information sciences (01.01.2020)“… Autoencoder network is an efficient representation learning method. In general, a finer feature set obtained from autoencoder leads to a lower error rate and …”
Volltext
Journal Article -
6
Adversarial Autoencoder Network for Hyperspectral Unmixing
ISSN: 2162-237X, 2162-2388, 2162-2388Veröffentlicht: United States IEEE 01.08.2023Veröffentlicht in IEEE transaction on neural networks and learning systems (01.08.2023)“… Spectral unmixing (SU), which refers to extracting basic features (i.e., endmembers) at the subpixel level and calculating the corresponding proportion (i.e., …”
Volltext
Journal Article -
7
Hyperspectral Unmixing for Additive Nonlinear Models With a 3-D-CNN Autoencoder Network
ISSN: 0196-2892, 1558-0644Veröffentlicht: New York IEEE 2022Veröffentlicht in IEEE transactions on geoscience and remote sensing (2022)“… Spectral unmixing is an important task in hyperspectral image processing for separating the mixed spectral data pertaining to various materials observed aiming …”
Volltext
Journal Article -
8
A new efficient training strategy for deep neural networks by hybridization of artificial bee colony and limited–memory BFGS optimization algorithms
ISSN: 0925-2312, 1872-8286Veröffentlicht: Elsevier B.V 29.11.2017Veröffentlicht in Neurocomputing (Amsterdam) (29.11.2017)“… Working up with deep learning techniques requires profound understanding of the mechanisms underlying the optimization of the internal parameters of complex …”
Volltext
Journal Article -
9
Dual-Branch Subpixel-Guided Network for Hyperspectral Image Classification
ISSN: 0196-2892, 1558-0644Veröffentlicht: New York IEEE 2024Veröffentlicht in IEEE transactions on geoscience and remote sensing (2024)“… Deep learning (DL) has been widely applied to hyperspectral image (HSI) classification, owing to its promising feature learning and representation …”
Volltext
Journal Article -
10
Application of Robust Zero-Watermarking Scheme Based on Federated Learning for Securing the Healthcare Data
ISSN: 2168-2194, 2168-2208, 2168-2208Veröffentlicht: United States IEEE 01.02.2023Veröffentlicht in IEEE journal of biomedical and health informatics (01.02.2023)“… The privacy protection and data security problems existing in the healthcare framework based on the Internet of Medical Things (IoMT) have always attracted …”
Volltext
Journal Article -
11
LSTM-DNN Based Autoencoder Network for Nonlinear Hyperspectral Image Unmixing
ISSN: 1932-4553, 1941-0484Veröffentlicht: New York IEEE 01.02.2021Veröffentlicht in IEEE journal of selected topics in signal processing (01.02.2021)“… Blind hyperspectral unmixing is an important technique in hyperspectral image analysis, aiming at estimating endmembers and their respective fractional …”
Volltext
Journal Article -
12
Nonlinear Unmixing of Hyperspectral Data via Deep Autoencoder Networks
ISSN: 1545-598X, 1558-0571Veröffentlicht: Piscataway IEEE 01.09.2019Veröffentlicht in IEEE geoscience and remote sensing letters (01.09.2019)“… Nonlinear spectral unmixing is an important and challenging problem in hyperspectral image processing. Classical nonlinear algorithms are usually derived based …”
Volltext
Journal Article -
13
Waste classification using AutoEncoder network with integrated feature selection method in convolutional neural network models
ISSN: 0263-2241, 1873-412XVeröffentlicht: London Elsevier Ltd 01.03.2020Veröffentlicht in Measurement : journal of the International Measurement Confederation (01.03.2020)“… [Display omitted] •Classification of organic and recyclable wastes with deep learning models.•We extracted and combined the features from the layer of …”
Volltext
Journal Article -
14
A multistage graph-based autoencoder network with global-local features for hyperspectral unmixing
ISSN: 0143-1161, 1366-5901, 1366-5901Veröffentlicht: Taylor & Francis 19.05.2025Veröffentlicht in International journal of remote sensing (19.05.2025)“… Hyperspectral unmixing using deep learning has received increasing attention as a technique for estimating endmember spectra and fractional abundances of land …”
Volltext
Journal Article -
15
SAE-Net: A Deep Neural Network for SAR Autofocus
ISSN: 0196-2892, 1558-0644Veröffentlicht: New York IEEE 2022Veröffentlicht in IEEE transactions on geoscience and remote sensing (2022)“… The sparsity-driven technique is a widely used tool to solve the synthetic aperture radar (SAR) imaging problem. However, it always encounters sensitivity to …”
Volltext
Journal Article -
16
Multilinear hyperspectral unmixing based on autoencoder and recurrent neural network
ISSN: 1568-4946Veröffentlicht: Elsevier B.V 01.12.2025Veröffentlicht in Applied soft computing (01.12.2025)“… Spectral unmixing techniques estimate the endmember spectra and corresponding abundance fractions that constitute the pixels of hyperspectral remote sensing …”
Volltext
Journal Article -
17
Recognition of geochemical anomalies using a deep variational autoencoder network
ISSN: 0883-2927, 1872-9134Veröffentlicht: Elsevier Ltd 01.11.2020Veröffentlicht in Applied geochemistry (01.11.2020)“… Deep learning (DL) algorithms have received increased attention in various fields. In the field of geoscience, DL has been shown to be a powerful tool for …”
Volltext
Journal Article -
18
A Self-Adaptive Discriminative Autoencoder for Medical Applications
ISSN: 1051-8215, 1558-2205Veröffentlicht: New York IEEE 01.12.2022Veröffentlicht in IEEE transactions on circuits and systems for video technology (01.12.2022)“… Computer aided diagnosis (CAD) systems play an essential role in the early detection and diagnosis of developing disease for medical applications. In order to …”
Volltext
Journal Article -
19
Deep Embedding Clustering Based on Residual Autoencoder
ISSN: 1573-773X, 1573-773XVeröffentlicht: New York Springer US 30.03.2024Veröffentlicht in Neural processing letters (30.03.2024)“… Clustering algorithm is one of the most widely used and influential analysis techniques. With the advent of deep learning, deep embedding clustering algorithms …”
Volltext
Journal Article -
20
Autoencoder-based image fusion network with enhanced channels and feature saliency
ISSN: 0030-4026Veröffentlicht: Elsevier GmbH 01.12.2024Veröffentlicht in Optik (Stuttgart) (01.12.2024)“… The existing deep learning based infrared and visible image fusion technologies have made significant progress, but there are still many problems need to be …”
Volltext
Journal Article