Suchergebnisse - "Autoencoder network"

  1. 1

    Towards Enhanced Interpretability: A Mechanism-Driven domain adaptation model for bearing fault diagnosis across operating conditions von Jiang, Fei, Kuang, Yicong, Li, Tao, Zhang, Shaohui, Wu, Zhaoqian, Feng, Ke, Li, Weihua

    ISSN: 0888-3270
    Veröffentlicht: Elsevier Ltd 15.02.2025
    Veröffentlicht in Mechanical systems and signal processing (15.02.2025)
    “… Deep learning has emerged as a formidable tool in bearing fault diagnosis, yet its effectiveness is often hampered by the opaqueness of feature interpretation …”
    Volltext
    Journal Article
  2. 2

    Softmax regression based deep sparse autoencoder network for facial emotion recognition in human-robot interaction von Chen, Luefeng, Zhou, Mengtian, Su, Wanjuan, Wu, Min, She, Jinhua, Hirota, Kaoru

    ISSN: 0020-0255, 1872-6291
    Veröffentlicht: Elsevier Inc 01.02.2018
    Veröffentlicht in Information sciences (01.02.2018)
    “… Deep neural network (DNN) has been used as a learning model for modeling the hierarchical architecture of human brain. However, DNN suffers from problems of …”
    Volltext
    Journal Article
  3. 3

    DAEN: Deep Autoencoder Networks for Hyperspectral Unmixing von Su, Yuanchao, Li, Jun, Plaza, Antonio, Marinoni, Andrea, Gamba, Paolo, Chakravortty, Somdatta

    ISSN: 0196-2892, 1558-0644
    Veröffentlicht: New York IEEE 01.07.2019
    Veröffentlicht in IEEE transactions on geoscience and remote sensing (01.07.2019)
    “… Spectral unmixing is a technique for remotely sensed image interpretation that expresses each (possibly mixed) pixel as a combination of pure spectral …”
    Volltext
    Journal Article
  4. 4

    An unsupervised feature learning based health indicator construction method for performance assessment of machines von Guo, Liang, Yu, Yaoxiang, Duan, Andongzhe, Gao, Hongli, Zhang, Jiangquan

    ISSN: 0888-3270, 1096-1216
    Veröffentlicht: Berlin Elsevier Ltd 15.03.2022
    Veröffentlicht in Mechanical systems and signal processing (15.03.2022)
    “… •A multi-scale CAE network is used to extract features from three scale levels.•Only the data collected under health conditions are used for network …”
    Volltext
    Journal Article
  5. 5

    Sequential three-way decision based on multi-granular autoencoder features von Zhang, Libo, Li, Huaxiong, Zhou, Xianzhong, Huang, Bing

    ISSN: 0020-0255, 1872-6291
    Veröffentlicht: Elsevier Inc 01.01.2020
    Veröffentlicht in Information sciences (01.01.2020)
    “… Autoencoder network is an efficient representation learning method. In general, a finer feature set obtained from autoencoder leads to a lower error rate and …”
    Volltext
    Journal Article
  6. 6

    Adversarial Autoencoder Network for Hyperspectral Unmixing von Jin, Qiwen, Ma, Yong, Fan, Fan, Huang, Jun, Mei, Xiaoguang, Ma, Jiayi

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.08.2023
    “… Spectral unmixing (SU), which refers to extracting basic features (i.e., endmembers) at the subpixel level and calculating the corresponding proportion (i.e., …”
    Volltext
    Journal Article
  7. 7

    Hyperspectral Unmixing for Additive Nonlinear Models With a 3-D-CNN Autoencoder Network von Zhao, Min, Wang, Mou, Chen, Jie, Rahardja, Susanto

    ISSN: 0196-2892, 1558-0644
    Veröffentlicht: New York IEEE 2022
    “… Spectral unmixing is an important task in hyperspectral image processing for separating the mixed spectral data pertaining to various materials observed aiming …”
    Volltext
    Journal Article
  8. 8

    A new efficient training strategy for deep neural networks by hybridization of artificial bee colony and limited–memory BFGS optimization algorithms von Badem, Hasan, Basturk, Alper, Caliskan, Abdullah, Yuksel, Mehmet Emin

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 29.11.2017
    Veröffentlicht in Neurocomputing (Amsterdam) (29.11.2017)
    “… Working up with deep learning techniques requires profound understanding of the mechanisms underlying the optimization of the internal parameters of complex …”
    Volltext
    Journal Article
  9. 9

    Dual-Branch Subpixel-Guided Network for Hyperspectral Image Classification von Han, Zhu, Yang, Jin, Gao, Lianru, Zeng, Zhiqiang, Zhang, Bing, Chanussot, Jocelyn

    ISSN: 0196-2892, 1558-0644
    Veröffentlicht: New York IEEE 2024
    “… Deep learning (DL) has been widely applied to hyperspectral image (HSI) classification, owing to its promising feature learning and representation …”
    Volltext
    Journal Article
  10. 10

    Application of Robust Zero-Watermarking Scheme Based on Federated Learning for Securing the Healthcare Data von Han, Baoru, Jhaveri, Rutvij H., Wang, Han, Qiao, Dawei, Du, Jinglong

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Veröffentlicht: United States IEEE 01.02.2023
    Veröffentlicht in IEEE journal of biomedical and health informatics (01.02.2023)
    “… The privacy protection and data security problems existing in the healthcare framework based on the Internet of Medical Things (IoMT) have always attracted …”
    Volltext
    Journal Article
  11. 11

    LSTM-DNN Based Autoencoder Network for Nonlinear Hyperspectral Image Unmixing von Zhao, Min, Yan, Longbin, Chen, Jie

    ISSN: 1932-4553, 1941-0484
    Veröffentlicht: New York IEEE 01.02.2021
    “… Blind hyperspectral unmixing is an important technique in hyperspectral image analysis, aiming at estimating endmembers and their respective fractional …”
    Volltext
    Journal Article
  12. 12

    Nonlinear Unmixing of Hyperspectral Data via Deep Autoencoder Networks von Wang, Mou, Zhao, Min, Chen, Jie, Rahardja, Susanto

    ISSN: 1545-598X, 1558-0571
    Veröffentlicht: Piscataway IEEE 01.09.2019
    Veröffentlicht in IEEE geoscience and remote sensing letters (01.09.2019)
    “… Nonlinear spectral unmixing is an important and challenging problem in hyperspectral image processing. Classical nonlinear algorithms are usually derived based …”
    Volltext
    Journal Article
  13. 13

    Waste classification using AutoEncoder network with integrated feature selection method in convolutional neural network models von Toğaçar, Mesut, Ergen, Burhan, Cömert, Zafer

    ISSN: 0263-2241, 1873-412X
    Veröffentlicht: London Elsevier Ltd 01.03.2020
    “… [Display omitted] •Classification of organic and recyclable wastes with deep learning models.•We extracted and combined the features from the layer of …”
    Volltext
    Journal Article
  14. 14

    A multistage graph-based autoencoder network with global-local features for hyperspectral unmixing von Dong, Hua, Zhang, Xiaohua, Meng, Hongyun, Jiao, Licheng

    ISSN: 0143-1161, 1366-5901, 1366-5901
    Veröffentlicht: Taylor & Francis 19.05.2025
    Veröffentlicht in International journal of remote sensing (19.05.2025)
    “… Hyperspectral unmixing using deep learning has received increasing attention as a technique for estimating endmember spectra and fractional abundances of land …”
    Volltext
    Journal Article
  15. 15

    SAE-Net: A Deep Neural Network for SAR Autofocus von Pu, Wei

    ISSN: 0196-2892, 1558-0644
    Veröffentlicht: New York IEEE 2022
    “… The sparsity-driven technique is a widely used tool to solve the synthetic aperture radar (SAR) imaging problem. However, it always encounters sensitivity to …”
    Volltext
    Journal Article
  16. 16

    Multilinear hyperspectral unmixing based on autoencoder and recurrent neural network von Jin, Zehui, Yi, Xiaorui, Liu, Yue, Zhang, Hongjuan

    ISSN: 1568-4946
    Veröffentlicht: Elsevier B.V 01.12.2025
    Veröffentlicht in Applied soft computing (01.12.2025)
    “… Spectral unmixing techniques estimate the endmember spectra and corresponding abundance fractions that constitute the pixels of hyperspectral remote sensing …”
    Volltext
    Journal Article
  17. 17

    Recognition of geochemical anomalies using a deep variational autoencoder network von Luo, Zijing, Xiong, Yihui, Zuo, Renguang

    ISSN: 0883-2927, 1872-9134
    Veröffentlicht: Elsevier Ltd 01.11.2020
    Veröffentlicht in Applied geochemistry (01.11.2020)
    “… Deep learning (DL) algorithms have received increased attention in various fields. In the field of geoscience, DL has been shown to be a powerful tool for …”
    Volltext
    Journal Article
  18. 18

    A Self-Adaptive Discriminative Autoencoder for Medical Applications von Ge, Xiaolong, Qu, Yanpeng, Shang, Changjing, Yang, Longzhi, Shen, Qiang

    ISSN: 1051-8215, 1558-2205
    Veröffentlicht: New York IEEE 01.12.2022
    “… Computer aided diagnosis (CAD) systems play an essential role in the early detection and diagnosis of developing disease for medical applications. In order to …”
    Volltext
    Journal Article
  19. 19

    Deep Embedding Clustering Based on Residual Autoencoder von Li, Mengli, Cao, Chao, Li, Chungui, Yang, Shuhong

    ISSN: 1573-773X, 1573-773X
    Veröffentlicht: New York Springer US 30.03.2024
    Veröffentlicht in Neural processing letters (30.03.2024)
    “… Clustering algorithm is one of the most widely used and influential analysis techniques. With the advent of deep learning, deep embedding clustering algorithms …”
    Volltext
    Journal Article
  20. 20

    Autoencoder-based image fusion network with enhanced channels and feature saliency von Wang, Hongmei, Lu, Xuanyu, Li, Ze

    ISSN: 0030-4026
    Veröffentlicht: Elsevier GmbH 01.12.2024
    Veröffentlicht in Optik (Stuttgart) (01.12.2024)
    “… The existing deep learning based infrared and visible image fusion technologies have made significant progress, but there are still many problems need to be …”
    Volltext
    Journal Article