Suchergebnisse - "Approximate dynamic programming"

  1. 1

    Data-Driven Optimal Control via Linear Programming: Boundedness Guarantees von Falconi, Lucia, Martinelli, Andrea, Lygeros, John

    ISSN: 0018-9286, 1558-2523
    Veröffentlicht: New York IEEE 01.03.2025
    Veröffentlicht in IEEE transactions on automatic control (01.03.2025)
    “… The linear programming (LP) approach is, together with value iteration and policy iteration, one of the three fundamental methods to solve optimal control …”
    Volltext
    Journal Article
  2. 2

    Online refueling policy for liner ships with offline learning von Liu, Haitao, Liang, Jinpeng, Li, Liming, Tan, Zhijia

    ISSN: 0377-2217
    Veröffentlicht: Elsevier B.V 01.11.2025
    Veröffentlicht in European journal of operational research (01.11.2025)
    “… •We model online refueling in liner shipping with distribution-free fuel prices as a finite-time MDP via Bellman equation.•We design a Bayesian GM model to …”
    Volltext
    Journal Article
  3. 3

    A unified framework for efficient, effective, and fair resource allocation by food banks using an Approximate Dynamic Programming approach von Alkaabneh, Faisal, Diabat, Ali, Gao, Huaizhu Oliver

    ISSN: 0305-0483, 1873-5274
    Veröffentlicht: Elsevier Ltd 01.04.2021
    Veröffentlicht in Omega (Oxford) (01.04.2021)
    “… •We developed a framework for optimizing resource allocation by food banks.•A Markov Decision Process model of the problem was formulated.•The value function …”
    Volltext
    Journal Article
  4. 4

    Reinforcement learning algorithms with function approximation: Recent advances and applications von Xu, Xin, Zuo, Lei, Huang, Zhenhua

    ISSN: 0020-0255, 1872-6291
    Veröffentlicht: Elsevier Inc 10.03.2014
    Veröffentlicht in Information sciences (10.03.2014)
    “… In recent years, the research on reinforcement learning (RL) has focused on function approximation in learning prediction and control of Markov decision …”
    Volltext
    Journal Article
  5. 5

    Opportunities for reinforcement learning in stochastic dynamic vehicle routing von Hildebrandt, Florentin D., Thomas, Barrett W., Ulmer, Marlin W.

    ISSN: 0305-0548, 1873-765X
    Veröffentlicht: Elsevier Ltd 01.02.2023
    Veröffentlicht in Computers & operations research (01.02.2023)
    “… There has been a paradigm-shift in urban logistic services in the last years; demand for real-time, instant mobility and delivery services grows. This poses …”
    Volltext
    Journal Article
  6. 6

    Improved approximate dynamic programming for real-time economic dispatch of integrated microgrids von Lin, Zhiyi, Song, Chunyue, Zhao, Jun, Yin, Huan

    ISSN: 0360-5442
    Veröffentlicht: Elsevier Ltd 15.09.2022
    Veröffentlicht in Energy (Oxford) (15.09.2022)
    “… Economic dispatch of electricity-heat microgrid is critical for real-time power generation and storage. However, conventional economic dispatch algorithms are …”
    Volltext
    Journal Article
  7. 7

    Train trajectory optimization for improved on-time arrival under parametric uncertainty von Wang, Pengling, Trivella, Alessio, Goverde, Rob M.P., Corman, Francesco

    ISSN: 0968-090X, 1879-2359
    Veröffentlicht: Elsevier Ltd 01.10.2020
    “… •The uncertainty in traction effort and train resistance is considered.•An approximate dynamic programming approach for off-line value function learning.•A …”
    Volltext
    Journal Article
  8. 8

    Dynamic Energy Management of a Microgrid Using Approximate Dynamic Programming and Deep Recurrent Neural Network Learning von Zeng, Peng, Li, Hepeng, He, Haibo, Li, Shuhui

    ISSN: 1949-3053, 1949-3061
    Veröffentlicht: Piscataway IEEE 01.07.2019
    Veröffentlicht in IEEE transactions on smart grid (01.07.2019)
    “… This paper focuses on economical operation of a microgrid (MG) in real-time. A novel dynamic energy management system is developed to incorporate efficient …”
    Volltext
    Journal Article
  9. 9

    A Reinforcement-Learning, Optimal Approach to In Situ Power Hardware-in-the-Loop Interface Control for Testing Inverter-Based Resources: Theory and Application of the Adaptive Dynamic Programming Based on the Hybrid Iteration to Tackle Uncertain Dynamics von Davari, Masoud, Qasem, Omar, Gao, Weinan, Blaabjerg, Frede, Kotsampopoulos, Panos C., Lauss, Georg, Hatziargyriou, Nikos D.

    ISSN: 0278-0046, 1557-9948
    Veröffentlicht: New York IEEE 01.06.2025
    Veröffentlicht in IEEE transactions on industrial electronics (1982) (01.06.2025)
    “… Testing inverter-based resources (IBRs) is of utmost importance. This paper proposes a novel power hardware-in-the-loop (PHIL) interface control (PHIL-IC) …”
    Volltext
    Journal Article
  10. 10

    Adaptive Dynamic Programming for Control: A Survey and Recent Advances von Liu, Derong, Xue, Shan, Zhao, Bo, Luo, Biao, Wei, Qinglai

    ISSN: 2168-2216, 2168-2232
    Veröffentlicht: New York IEEE 01.01.2021
    “… This article reviews the recent development of adaptive dynamic programming (ADP) with applications in control. First, its applications in optimal regulation …”
    Volltext
    Journal Article
  11. 11

    Stochastic Optimization of Economic Dispatch for Microgrid Based on Approximate Dynamic Programming von Shuai, Hang, Fang, Jiakun, Ai, Xiaomeng, Tang, Yufei, Wen, Jinyu, He, Haibo

    ISSN: 1949-3053, 1949-3061
    Veröffentlicht: Piscataway IEEE 01.05.2019
    Veröffentlicht in IEEE transactions on smart grid (01.05.2019)
    “… This paper proposes an approximate dynamic programming (ADP)-based approach for the economic dispatch (ED) of microgrid with distributed generations. The …”
    Volltext
    Journal Article
  12. 12

    How good are learning-based control v.s. model-based control for load shifting? Investigations on a single zone building energy system von Fu, Yangyang, Xu, Shichao, Zhu, Qi, O’Neill, Zheng, Adetola, Veronica

    ISSN: 0360-5442
    Veröffentlicht: United Kingdom Elsevier Ltd 01.06.2023
    Veröffentlicht in Energy (Oxford) (01.06.2023)
    “… Both model predictive control (MPC) and deep reinforcement learning control (DRL) have been presented as a way to approximate the true optimality of a dynamic …”
    Volltext
    Journal Article
  13. 13

    Decentralized optimal large scale multi-player pursuit-evasion strategies: A mean field game approach with reinforcement learning von Zhou, Zejian, Xu, Hao

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 01.05.2022
    Veröffentlicht in Neurocomputing (Amsterdam) (01.05.2022)
    “… In this paper, the intelligent design for the pursuit-evasion game with large scale multi-pursuer and multi-evader has been investigated. Due to the vast …”
    Volltext
    Journal Article
  14. 14

    Multi-Stage Real-Time Operation of a Multi-Energy Microgrid With Electrical and Thermal Energy Storage Assets: A Data-Driven MPC-ADP Approach von Li, Zhengmao, Wu, Lei, Xu, Yan, Moazeni, Somayeh, Tang, Zao

    ISSN: 1949-3053, 1949-3061
    Veröffentlicht: Piscataway IEEE 01.01.2022
    Veröffentlicht in IEEE transactions on smart grid (01.01.2022)
    “… This paper studies the multi-stage real-time stochastic operation of grid-tied multi-energy microgrids (MEMGs) via the hybrid model predictive control (MPC) …”
    Volltext
    Journal Article
  15. 15

    An approximate dynamic programming approach for the vehicle routing problem with stochastic demands von Novoa, Clara, Storer, Robert

    ISSN: 0377-2217, 1872-6860
    Veröffentlicht: Amsterdam Elsevier B.V 16.07.2009
    Veröffentlicht in European journal of operational research (16.07.2009)
    “… This paper examines approximate dynamic programming algorithms for the single-vehicle routing problem with stochastic demands from a dynamic or reoptimization …”
    Volltext
    Journal Article
  16. 16

    A novel dual iterative Q-learning method for optimal battery management in smart residential environments von Wei, Qinglai, Liu, Derong, Shi, Guang

    ISSN: 0278-0046, 1557-9948
    Veröffentlicht: IEEE 01.04.2015
    Veröffentlicht in IEEE transactions on industrial electronics (1982) (01.04.2015)
    “… In this paper, a novel iterative Q-learning method called "dual iterative Q-learning algorithm" is developed to solve the optimal battery management and …”
    Volltext
    Journal Article
  17. 17

    Output feedback adaptive dynamic programming for linear differential zero-sum games von Rizvi, Syed Ali Asad, Lin, Zongli

    ISSN: 0005-1098, 1873-2836
    Veröffentlicht: Elsevier Ltd 01.12.2020
    Veröffentlicht in Automatica (Oxford) (01.12.2020)
    “… This paper addresses the problem of finding optimal output feedback strategies for solving linear differential zero-sum games using a model-free approach based …”
    Volltext
    Journal Article
  18. 18

    Robust optimal control for a class of nonlinear systems with unknown disturbances based on disturbance observer and policy iteration von Song, Ruizhuo, Lewis, Frank L.

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 21.05.2020
    Veröffentlicht in Neurocomputing (Amsterdam) (21.05.2020)
    “… A robust optimal control method for a class of nonlinear systems with unknown disturbances is addressed in this paper. In this framework, adaptive dynamic …”
    Volltext
    Journal Article
  19. 19

    Influence of unmanned combat aerial vehicle agility on short-range aerial combat effectiveness von Wang, Maolin, Wang, Lixin, Yue, Ting, Liu, Hailiang

    ISSN: 1270-9638, 1626-3219
    Veröffentlicht: Elsevier Masson SAS 01.01.2020
    Veröffentlicht in Aerospace science and technology (01.01.2020)
    “… The flight agility of an unmanned combat aerial vehicle (UCAV) determines its ability to rapidly transition from one state to another. In this paper, the …”
    Volltext
    Journal Article
  20. 20

    Approximate dynamic programming for planning a ride-hailing system using autonomous fleets of electric vehicles von Al-Kanj, Lina, Nascimento, Juliana, Powell, Warren B.

    ISSN: 0377-2217, 1872-6860
    Veröffentlicht: Elsevier B.V 01.08.2020
    Veröffentlicht in European journal of operational research (01.08.2020)
    “… •A comprehensive mathematical model for an autonomous fleet of electric vehicles.•Optimizing over time by capturing the characteristics of the trips demand …”
    Volltext
    Journal Article